Facile fabrication of electrospun hybrid nanofibers integrated cellulose, chitosan with ZIF-8 for efficient remediation of copper ions

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Kaixing Zhang , Chaojie Zhu , Linkun Xie , Lianpeng Zhang , Xijuan Chai , Chunhua Wu , Siqun Wang , Wanxi Peng , Guanben Du , Kaimeng Xu
{"title":"Facile fabrication of electrospun hybrid nanofibers integrated cellulose, chitosan with ZIF-8 for efficient remediation of copper ions","authors":"Kaixing Zhang ,&nbsp;Chaojie Zhu ,&nbsp;Linkun Xie ,&nbsp;Lianpeng Zhang ,&nbsp;Xijuan Chai ,&nbsp;Chunhua Wu ,&nbsp;Siqun Wang ,&nbsp;Wanxi Peng ,&nbsp;Guanben Du ,&nbsp;Kaimeng Xu","doi":"10.1016/j.carbpol.2025.123574","DOIUrl":null,"url":null,"abstract":"<div><div>To removal copper ions (Cu<sup>2+</sup>) from wastewater, structurally stable microcrystalline cellulose (MCC)/chitosan (CS)/zeolitic imidazole framework-8 (ZIF-8) hybrid nanofibers were fabricated by mixing electrospinning (MCC/CS/ZIF-8) and in-situ grown of ZIF-8 on electrospun nanofibers (I-MCC/CS/ZIF-8). The microstructure, porosity, thermal stability, crystal structure, surface wettability, chemical groups of hybrid nanofibers as well as their adsorption performance, isotherms, and kinetics were characterized and analyzed. The rhombohedral ZIF-8 at the optimum synthesis ratio was evenly bounded to nanofibers, corresponding to an average diameter of 775.81 nm. The introduction of ZIF-8 effectively improved the thermal stability of biomass polysaccharide nanofibers, maintained beneficial hydrophilicity (25.08°), increased their specific surface area by 16.51 times, and provided abundant potential active sites for Cu<sup>2+</sup> adsorption. The adsorption performance of I-MCC/CS/ZIF-8 was superior to that of MCC/CS/ZIF-8, achieving the maximum Cu<sup>2+</sup> adsorption capacity of 204.08 mg g<sup>−1</sup> at pH = 5, which conformed to both the Langmuir model and the pseudo-second-order kinetic model. The enhanced mechanism for Cu<sup>2+</sup> adsorption can be attributed to the sufficient channels of porous network and the strong hydrogen bonding facilitating physical adsorption, as well as the effective chemical adsorption resulting from the rapid growth of ultrathin lamellar copper oxide‑zinc oxide heterojunctions with nanoflower-like shapes.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"359 ","pages":"Article 123574"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725003558","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

To removal copper ions (Cu2+) from wastewater, structurally stable microcrystalline cellulose (MCC)/chitosan (CS)/zeolitic imidazole framework-8 (ZIF-8) hybrid nanofibers were fabricated by mixing electrospinning (MCC/CS/ZIF-8) and in-situ grown of ZIF-8 on electrospun nanofibers (I-MCC/CS/ZIF-8). The microstructure, porosity, thermal stability, crystal structure, surface wettability, chemical groups of hybrid nanofibers as well as their adsorption performance, isotherms, and kinetics were characterized and analyzed. The rhombohedral ZIF-8 at the optimum synthesis ratio was evenly bounded to nanofibers, corresponding to an average diameter of 775.81 nm. The introduction of ZIF-8 effectively improved the thermal stability of biomass polysaccharide nanofibers, maintained beneficial hydrophilicity (25.08°), increased their specific surface area by 16.51 times, and provided abundant potential active sites for Cu2+ adsorption. The adsorption performance of I-MCC/CS/ZIF-8 was superior to that of MCC/CS/ZIF-8, achieving the maximum Cu2+ adsorption capacity of 204.08 mg g−1 at pH = 5, which conformed to both the Langmuir model and the pseudo-second-order kinetic model. The enhanced mechanism for Cu2+ adsorption can be attributed to the sufficient channels of porous network and the strong hydrogen bonding facilitating physical adsorption, as well as the effective chemical adsorption resulting from the rapid growth of ultrathin lamellar copper oxide‑zinc oxide heterojunctions with nanoflower-like shapes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信