Scott Burlison , Michael F. Becker , Desiderio Kovar
{"title":"A molecular dynamics study of high velocity impact of zinc oxide aggregates","authors":"Scott Burlison , Michael F. Becker , Desiderio Kovar","doi":"10.1016/j.jaerosci.2025.106582","DOIUrl":null,"url":null,"abstract":"<div><div>Although dry aerosol deposition methods (aerosol deposition, micro cold spray, and vacuum kinetic spraying) for producing films typically utilize fine powders that are agglomerated or aggregated, to date these processes have been modeled using single particle impacts. In this study, molecular dynamics simulations were conducted to study the more realistic scenario where aggregates of ZnO were impacted at a high velocity. For these simulations, aggregates containing six primary particles with a diameter of 10 nm were first annealed at three temperatures (1000 °C, 1300 °C, and 1500 °C) to induce growth of interparticle necks with varying sizes and therefore indirectly affect the strengths of these interparticle necks. The annealed aggregates were then impacted to observe the deformation mechanisms that contribute to film formation. The results suggest that deformation within the aggregates is driven by viscous flow that occurs after solid state amorphization or melting and is driven by large, localized pressures and heating. The size/strengths of the necks, impact velocity, and aggregate orientations affect how deformation is concentrated and whether the aggregate can dissipate sufficient kinetic energy to deposit onto the substrate without fracturing the interparticle necks.</div></div>","PeriodicalId":14880,"journal":{"name":"Journal of Aerosol Science","volume":"187 ","pages":"Article 106582"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Science","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002185022500059X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although dry aerosol deposition methods (aerosol deposition, micro cold spray, and vacuum kinetic spraying) for producing films typically utilize fine powders that are agglomerated or aggregated, to date these processes have been modeled using single particle impacts. In this study, molecular dynamics simulations were conducted to study the more realistic scenario where aggregates of ZnO were impacted at a high velocity. For these simulations, aggregates containing six primary particles with a diameter of 10 nm were first annealed at three temperatures (1000 °C, 1300 °C, and 1500 °C) to induce growth of interparticle necks with varying sizes and therefore indirectly affect the strengths of these interparticle necks. The annealed aggregates were then impacted to observe the deformation mechanisms that contribute to film formation. The results suggest that deformation within the aggregates is driven by viscous flow that occurs after solid state amorphization or melting and is driven by large, localized pressures and heating. The size/strengths of the necks, impact velocity, and aggregate orientations affect how deformation is concentrated and whether the aggregate can dissipate sufficient kinetic energy to deposit onto the substrate without fracturing the interparticle necks.
期刊介绍:
Founded in 1970, the Journal of Aerosol Science considers itself the prime vehicle for the publication of original work as well as reviews related to fundamental and applied aerosol research, as well as aerosol instrumentation. Its content is directed at scientists working in engineering disciplines, as well as physics, chemistry, and environmental sciences.
The editors welcome submissions of papers describing recent experimental, numerical, and theoretical research related to the following topics:
1. Fundamental Aerosol Science.
2. Applied Aerosol Science.
3. Instrumentation & Measurement Methods.