Reinforcement learning event-triggered energy-based control for unmanned surface vessel with disturbances

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Chengxing Lv , Ying Zhang , Zichen Wang , Jian Chen , Zhibo Yang , Haisheng Yu
{"title":"Reinforcement learning event-triggered energy-based control for unmanned surface vessel with disturbances","authors":"Chengxing Lv ,&nbsp;Ying Zhang ,&nbsp;Zichen Wang ,&nbsp;Jian Chen ,&nbsp;Zhibo Yang ,&nbsp;Haisheng Yu","doi":"10.1016/j.oceaneng.2025.121132","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel event-triggered energy-based controller for Unmanned Surface Vessels (USVs) operating in complex scenarios, integrating reinforcement learning techniques with an energy-based framework. Model uncertainties are captured via actor-critic neural networks (NNs), where actor NNs generate control actions and critic NNs assess their performance. To address disturbances, a self-learning nonlinear disturbance observer with an adaptive learning factor is developed, enhancing the accuracy of disturbance estimation. A state-error port-controlled Hamiltonian (PCH) strategy ensures trajectory tracking, complemented by variable damping techniques to optimize the closed-loop system’s dynamic response. The design incorporates event-triggered mechanisms and adaptive control methods to ensure boundedness of all closed-loop signals. Stability analysis demonstrates convergence of the tracking error to a neighborhood of the origin, and simulation results validate the controller’s feasibility and efficacy.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"329 ","pages":"Article 121132"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825008455","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel event-triggered energy-based controller for Unmanned Surface Vessels (USVs) operating in complex scenarios, integrating reinforcement learning techniques with an energy-based framework. Model uncertainties are captured via actor-critic neural networks (NNs), where actor NNs generate control actions and critic NNs assess their performance. To address disturbances, a self-learning nonlinear disturbance observer with an adaptive learning factor is developed, enhancing the accuracy of disturbance estimation. A state-error port-controlled Hamiltonian (PCH) strategy ensures trajectory tracking, complemented by variable damping techniques to optimize the closed-loop system’s dynamic response. The design incorporates event-triggered mechanisms and adaptive control methods to ensure boundedness of all closed-loop signals. Stability analysis demonstrates convergence of the tracking error to a neighborhood of the origin, and simulation results validate the controller’s feasibility and efficacy.
具有扰动的无人水面舰艇强化学习事件触发能量控制
本文提出了一种新的基于事件触发的基于能量的控制器,用于无人水面舰艇(usv)在复杂场景中运行,将强化学习技术与基于能量的框架相结合。模型的不确定性通过行动者-评论家神经网络(NNs)捕获,其中行动者神经网络生成控制动作,评论家神经网络评估其性能。为了解决扰动问题,设计了一种具有自适应学习因子的自学习非线性扰动观测器,提高了扰动估计的精度。状态误差端口控制哈密顿量(PCH)策略确保轨迹跟踪,辅以可变阻尼技术优化闭环系统的动态响应。该设计结合了事件触发机制和自适应控制方法,以确保所有闭环信号的有界性。稳定性分析证明了跟踪误差收敛到原点的一个邻域,仿真结果验证了该控制器的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信