Natalia Liberato-López, Carolina Blanco, Carlos Daza
{"title":"Impact of Co addition on the stability of Ni-based catalysts on delaminated smectite for biogas reforming","authors":"Natalia Liberato-López, Carolina Blanco, Carlos Daza","doi":"10.1016/j.cattod.2025.115312","DOIUrl":null,"url":null,"abstract":"<div><div>Biogas is a renewable resource that can be converted into syngas <em>via</em> Ni-catalyzed dry reforming (DR) and serves as a precursor for e-fuel synthesis. However, the high CH₄ content in biogas accelerates Ni catalyst deactivation owing to carbon deposition. In this study, the effect of the Co addition (5 wt%) to a Ni catalyst (10 wt%) supported on delaminated mesoporous smectite for biogas DR was evaluated. Physicochemical characterization revealed that Co doping induces synergistic effects, including Ni-Co alloy formation that mitigates sintering, a decrease in metal particle size from 25.7 nm to 17.1 nm, increased basicity from 120 to 183 μmol·g<sub>cat</sub>⁻¹, and enhanced reducibility from 90 % to 98 %. Catalytic tests were conducted at 700 °C and 25 L·g<sub>cat</sub>⁻¹·h⁻¹ using a synthetic biogas mixture (CH₄/CO₂/N₂ = 45/35/20) without prior H₂ reduction. Co incorporation improved catalyst stability by reducing carbon accumulation, likely due to enhanced gasification. In contrast to the higher values observed for the Ni-only catalyst, the H₂/CO ratio for the Ni-Co catalyst remained in the range of 1–2. Additionally, no severe re-oxidation or sintering of the metallic phase was observed. The coke formed mainly consisted of low-crystallinity multi-walled carbon nanotubes, which were oxidized at lower temperatures for the Ni-Co catalyst. Regeneration by carbon combustion at 700 °C resulted in a maximum loss of 10 % in CH₄ conversion and 5 % in CO₂ conversion per cycle, with a 9.7 % increase in the carbon mass. These results highlight the potential of Ni-Co catalysts for stable biogas DR with improved regenerability.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"455 ","pages":"Article 115312"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125001300","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Biogas is a renewable resource that can be converted into syngas via Ni-catalyzed dry reforming (DR) and serves as a precursor for e-fuel synthesis. However, the high CH₄ content in biogas accelerates Ni catalyst deactivation owing to carbon deposition. In this study, the effect of the Co addition (5 wt%) to a Ni catalyst (10 wt%) supported on delaminated mesoporous smectite for biogas DR was evaluated. Physicochemical characterization revealed that Co doping induces synergistic effects, including Ni-Co alloy formation that mitigates sintering, a decrease in metal particle size from 25.7 nm to 17.1 nm, increased basicity from 120 to 183 μmol·gcat⁻¹, and enhanced reducibility from 90 % to 98 %. Catalytic tests were conducted at 700 °C and 25 L·gcat⁻¹·h⁻¹ using a synthetic biogas mixture (CH₄/CO₂/N₂ = 45/35/20) without prior H₂ reduction. Co incorporation improved catalyst stability by reducing carbon accumulation, likely due to enhanced gasification. In contrast to the higher values observed for the Ni-only catalyst, the H₂/CO ratio for the Ni-Co catalyst remained in the range of 1–2. Additionally, no severe re-oxidation or sintering of the metallic phase was observed. The coke formed mainly consisted of low-crystallinity multi-walled carbon nanotubes, which were oxidized at lower temperatures for the Ni-Co catalyst. Regeneration by carbon combustion at 700 °C resulted in a maximum loss of 10 % in CH₄ conversion and 5 % in CO₂ conversion per cycle, with a 9.7 % increase in the carbon mass. These results highlight the potential of Ni-Co catalysts for stable biogas DR with improved regenerability.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.