Stability and instability of solitary-wave solutions for the nonlinear Klein-Gordon equation

IF 1.7 2区 数学 Q1 MATHEMATICS
Jing Li , Yue Liu , Yifei Wu , Haohao Zheng
{"title":"Stability and instability of solitary-wave solutions for the nonlinear Klein-Gordon equation","authors":"Jing Li ,&nbsp;Yue Liu ,&nbsp;Yifei Wu ,&nbsp;Haohao Zheng","doi":"10.1016/j.jfa.2025.110981","DOIUrl":null,"url":null,"abstract":"<div><div>The nonlinear Klein-Gordon (KG) equation,<span><span><span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>u</mi><mo>=</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>,</mo><mspace></mspace><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span></span></span> is shown in the present paper to possess the solitary-wave solutions in the form of <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>ω</mi><mi>t</mi></mrow></msup><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>ω</mi><mo>,</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover></mrow></msub><mo>(</mo><mi>x</mi><mo>−</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mi>t</mi><mo>)</mo></math></span> with the parameters <em>ω</em> and <span><math><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> satisfying <span><math><mo>|</mo><mi>ω</mi><mo>|</mo><mo>&lt;</mo><msqrt><mrow><mn>1</mn><mo>−</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></span> and <span><math><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>&lt;</mo><mn>1</mn></math></span>. By employing a new localized virial identity combined with the coercivity and modulation argument, it is demonstrated here that there exists a critical frequency <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>)</mo></math></span> such that these localized solitary waves, when considered as solutions of the initial-value problem for the nonlinear KG equation, is dynamically stable when <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac><mo>,</mo><mo>|</mo><mi>ω</mi><mo>|</mo><mo>&gt;</mo><msub><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>)</mo></math></span> and is dynamically unstable when <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac><mo>,</mo><mn>0</mn><mo>&lt;</mo><mo>|</mo><mi>ω</mi><mo>|</mo><mo>≤</mo><msub><mrow><mi>ω</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mo>|</mo><mover><mrow><mi>c</mi></mrow><mrow><mo>→</mo></mrow></mover><mo>|</mo><mo>)</mo></math></span> or <span><math><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi></mrow></mfrac><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> (<span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span> or <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>) to small perturbations.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 6","pages":"Article 110981"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001636","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The nonlinear Klein-Gordon (KG) equation,ttuΔu+u=|u|p1u,(t,x)R×Rd is shown in the present paper to possess the solitary-wave solutions in the form of eiωtϕω,c(xct) with the parameters ω and cRd satisfying |ω|<1|c|2 and |c|<1. By employing a new localized virial identity combined with the coercivity and modulation argument, it is demonstrated here that there exists a critical frequency ω(|c|) such that these localized solitary waves, when considered as solutions of the initial-value problem for the nonlinear KG equation, is dynamically stable when 1<p<1+4d,|ω|>ω(|c|) and is dynamically unstable when 1<p<1+4d,0<|ω|ω(|c|) or 1+4dp<1+4d2 (d3 or 1<p< if d=1,2) to small perturbations.
非线性Klein-Gordon方程孤立波解的稳定性和不稳定性
本文给出了∂ttu−Δu+u=|u|p−1u,(t,x)∈R×Rd的非线性Klein-Gordon方程,其孤波解的形式为:iωtϕω,c→(x−c→t),参数ω和c→∈Rd满足|ω|<;1−|c→|2和|c→|<;1。利用一个新的局域孤波恒等式结合顽固性和调制论证,证明了存在一个临界频率ω (|c→|),使得这些局域孤波作为非线性KG方程初值问题的解,当1<;p<1+4d,|ω|>ω (|c→|)时动态稳定,当1<;p<1+4d,0<|ω|≤ω (|c→|)或1+4d≤p<;1+4d−2 (d≥3或d=1,2时1<;p<∞)时动态不稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信