Multi-objective Bayesian optimisation over sparse subspaces for model predictive control of wind farms

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Kiet Tuan Hoang , Sjoerd Boersma , Ali Mesbah , Lars Struen Imsland
{"title":"Multi-objective Bayesian optimisation over sparse subspaces for model predictive control of wind farms","authors":"Kiet Tuan Hoang ,&nbsp;Sjoerd Boersma ,&nbsp;Ali Mesbah ,&nbsp;Lars Struen Imsland","doi":"10.1016/j.renene.2025.122988","DOIUrl":null,"url":null,"abstract":"<div><div>As model mismatch (uncertainty) is inevitable, fine-tuning control strategies with closed-loop performance data is critical. This is relevant for model predictive control (MPC) in wind farms (WFs), as inaccurate wake models affect performance. However, challenges such as conflicting control objectives, limited closed-loop data due to expensive experiments, and the high-dimensional design spaces of these MPC formulations make tuning non-trivial. Inspired by the notion of performance-oriented learning, we propose a multi-objective (MO) Bayesian optimisation (BO) framework over sparse subspaces to address these challenges systematically for increased closed-loop MPC performance. To show the efficacy of the BO approach, a simulation case study with a 3x3 WF is investigated where the control objective is to provide secondary frequency regulation while minimising dynamic loading for an MPC with 28 design parameters to auto-tune. Simulations show that the proposed framework achieves a good balance between two conflicting WF control objectives, where dynamic loading is reduced by 51.59% compared to a nominal MPC whose performance is not tuned using closed-loop data while still achieving similar tracking performance. The proposed method is general and can be applied regardless of a closed-loop control goal, WF specifications (complexity, topology, location), or controller formulation for multi-objective constrained control of WFs.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"247 ","pages":"Article 122988"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125006500","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As model mismatch (uncertainty) is inevitable, fine-tuning control strategies with closed-loop performance data is critical. This is relevant for model predictive control (MPC) in wind farms (WFs), as inaccurate wake models affect performance. However, challenges such as conflicting control objectives, limited closed-loop data due to expensive experiments, and the high-dimensional design spaces of these MPC formulations make tuning non-trivial. Inspired by the notion of performance-oriented learning, we propose a multi-objective (MO) Bayesian optimisation (BO) framework over sparse subspaces to address these challenges systematically for increased closed-loop MPC performance. To show the efficacy of the BO approach, a simulation case study with a 3x3 WF is investigated where the control objective is to provide secondary frequency regulation while minimising dynamic loading for an MPC with 28 design parameters to auto-tune. Simulations show that the proposed framework achieves a good balance between two conflicting WF control objectives, where dynamic loading is reduced by 51.59% compared to a nominal MPC whose performance is not tuned using closed-loop data while still achieving similar tracking performance. The proposed method is general and can be applied regardless of a closed-loop control goal, WF specifications (complexity, topology, location), or controller formulation for multi-objective constrained control of WFs.

Abstract Image

在稀疏子空间上进行多目标贝叶斯优化,实现风电场的模型预测控制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信