Impregnation of Metal ions on ZIF-67 Towards the Production of Mixed-Metals Spinels for OER Electrocatalysis

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Annaíres de Almeida Lourenço , Rafael A. Raimundo , Ricardo Francisco Alves , Rodolfo B. da Silva , Daniel Araújo Macedo , Fausthon Fred da Silva
{"title":"Impregnation of Metal ions on ZIF-67 Towards the Production of Mixed-Metals Spinels for OER Electrocatalysis","authors":"Annaíres de Almeida Lourenço ,&nbsp;Rafael A. Raimundo ,&nbsp;Ricardo Francisco Alves ,&nbsp;Rodolfo B. da Silva ,&nbsp;Daniel Araújo Macedo ,&nbsp;Fausthon Fred da Silva","doi":"10.1016/j.jssc.2025.125352","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical water splitting is a key method for sustainable hydrogen (H<sub>2</sub>) production, but its efficiency is hindered by the slow kinetics and high overpotential of the oxygen evolution reaction (OER). This study investigates the synthesis and OER electrocatalytic performance of MCo<sub>2</sub>O<sub>4</sub> (M = Co, Fe, Ni, Mn, or Zn) nanoparticles derived from ZIF-67, named here Co<sub>3</sub>O<sub>4</sub>, Co<sub>3</sub>O<sub>4</sub>(Fe), Co<sub>3</sub>O<sub>4</sub>(Ni), Co<sub>3</sub>O<sub>4</sub>(Mn), and Co<sub>3</sub>O<sub>4</sub>(Zn). Here, a systematic detailed study was also conducted to investigate the influence of metal cation impregnation on ZIF-67 and its impact on the OER electrocatalytic activity of these transition metal cobaltites nanoparticles. The materials were obtained <em>via</em> direct calcination of the previously modified ZIF-67, and the impregnation process was also investigated. Structural (XRD), physicochemical (Raman spectroscopy, FT-IR and UV-VIS), and magnetic characterizations confirm the formation of pure crystalline phases for Co<sub>3</sub>O<sub>4</sub>, NiCo<sub>2</sub>O<sub>4</sub>, MnCo<sub>2</sub>O<sub>4</sub>, and ZnCo<sub>2</sub>O<sub>4</sub>, while the Fe-modified sample resulted in a nanocomposite (FeCo<sub>2</sub>O<sub>4</sub>/Co<sub>3</sub>O<sub>4</sub>). Morphological analysis revealed highly agglomerated sphere-like nanoparticles, with sizes between 12.1 nm (Co<sub>3</sub>O<sub>4</sub>(Fe)) and 20.8 nm (Co<sub>3</sub>O<sub>4</sub>(Mn)). OER performance in 1.0 M KOH showed overpotential values of 330 mV, 318 mV, 321 mV, 316 mV, and 310 mV for Co<sub>3</sub>O<sub>4</sub>, Co<sub>3</sub>O<sub>4</sub>(Fe), Co<sub>3</sub>O<sub>4</sub>(Ni), Co<sub>3</sub>O<sub>4</sub>(Mn), and Co<sub>3</sub>O<sub>4</sub>(Zn), respectively, at 10 mA cm<sup>-2</sup>. Tafel slopes ranged from 64.13 mV dec<sup>-1</sup> (Co<sub>3</sub>O<sub>4</sub>(Fe)) to 97.42 mV dec<sup>-1</sup> (Co<sub>3</sub>O<sub>4</sub>(Ni)), indicating a surface adsorption-controlled kinetics. Co<sub>3</sub>O<sub>4</sub>(Zn) exhibited the highest electrochemical surface area (123.50 cm<sup>2</sup>) and double-layer capacitance (4.94 mF), correlating with superior electrocatalytic performance. Stability tests confirmed chemical durability for up to 15 hours. These results demonstrate the potential of ZIF-67-derived transition metal cobaltites as effective OER electrocatalysts, with Co<sub>3</sub>O<sub>4</sub>(Zn) showing the most promising activity.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"348 ","pages":"Article 125352"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625001756","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical water splitting is a key method for sustainable hydrogen (H2) production, but its efficiency is hindered by the slow kinetics and high overpotential of the oxygen evolution reaction (OER). This study investigates the synthesis and OER electrocatalytic performance of MCo2O4 (M = Co, Fe, Ni, Mn, or Zn) nanoparticles derived from ZIF-67, named here Co3O4, Co3O4(Fe), Co3O4(Ni), Co3O4(Mn), and Co3O4(Zn). Here, a systematic detailed study was also conducted to investigate the influence of metal cation impregnation on ZIF-67 and its impact on the OER electrocatalytic activity of these transition metal cobaltites nanoparticles. The materials were obtained via direct calcination of the previously modified ZIF-67, and the impregnation process was also investigated. Structural (XRD), physicochemical (Raman spectroscopy, FT-IR and UV-VIS), and magnetic characterizations confirm the formation of pure crystalline phases for Co3O4, NiCo2O4, MnCo2O4, and ZnCo2O4, while the Fe-modified sample resulted in a nanocomposite (FeCo2O4/Co3O4). Morphological analysis revealed highly agglomerated sphere-like nanoparticles, with sizes between 12.1 nm (Co3O4(Fe)) and 20.8 nm (Co3O4(Mn)). OER performance in 1.0 M KOH showed overpotential values of 330 mV, 318 mV, 321 mV, 316 mV, and 310 mV for Co3O4, Co3O4(Fe), Co3O4(Ni), Co3O4(Mn), and Co3O4(Zn), respectively, at 10 mA cm-2. Tafel slopes ranged from 64.13 mV dec-1 (Co3O4(Fe)) to 97.42 mV dec-1 (Co3O4(Ni)), indicating a surface adsorption-controlled kinetics. Co3O4(Zn) exhibited the highest electrochemical surface area (123.50 cm2) and double-layer capacitance (4.94 mF), correlating with superior electrocatalytic performance. Stability tests confirmed chemical durability for up to 15 hours. These results demonstrate the potential of ZIF-67-derived transition metal cobaltites as effective OER electrocatalysts, with Co3O4(Zn) showing the most promising activity.

Abstract Image

金属离子在ZIF-67上浸渍制备OER电催化用混合金属尖晶石
电化学水分解是一种可持续制氢的关键方法,但其效率受到析氧反应(OER)动力学缓慢和高过电位的制约。本研究研究了由ZIF-67衍生的MCo2O4 (M = Co, Fe, Ni, Mn或Zn)纳米粒子的合成和OER电催化性能,这里命名为Co3O4, Co3O4(Fe), Co3O4(Ni), Co3O4(Mn)和Co3O4(Zn)。本文还系统详细地研究了金属阳离子浸渍对ZIF-67的影响及其对过渡金属钴酸盐纳米颗粒OER电催化活性的影响。对改性后的ZIF-67进行了直接煅烧制备,并对其浸渍工艺进行了研究。结构(XRD)、物理化学(拉曼光谱、FT-IR和UV-VIS)和磁性表征证实了Co3O4、NiCo2O4、MnCo2O4和ZnCo2O4形成了纯晶相,而fe修饰后的样品形成了纳米复合材料(FeCo2O4/Co3O4)。形貌分析显示,纳米颗粒高度团聚,粒径在12.1 nm (Co3O4(Fe))至20.8 nm (Co3O4(Mn))之间。在1.0 M KOH中,Co3O4、Co3O4(Fe)、Co3O4(Ni)、Co3O4(Mn)和Co3O4(Zn)在10 mA cm-2下的过电位分别为330 mV、318 mV、321 mV、316 mV和310 mV。Tafel斜率范围从64.13 mV dec-1 (Co3O4(Fe))到97.42 mV dec-1 (Co3O4(Ni)),表明表面吸附控制动力学。Co3O4(Zn)表现出最高的电化学表面积(123.50 cm2)和双层电容(4.94 mF),具有优异的电催化性能。稳定性测试证实了长达15小时的化学耐久性。这些结果证明了zif -67衍生的过渡金属钴酸盐作为有效的OER电催化剂的潜力,其中Co3O4(Zn)表现出最有希望的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信