Multi-stage feature fusion network for polyp segmentation

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guangzu Lv , Bin Wang , Cunlu Xu , Weiping Ding , Jun Liu
{"title":"Multi-stage feature fusion network for polyp segmentation","authors":"Guangzu Lv ,&nbsp;Bin Wang ,&nbsp;Cunlu Xu ,&nbsp;Weiping Ding ,&nbsp;Jun Liu","doi":"10.1016/j.asoc.2025.113034","DOIUrl":null,"url":null,"abstract":"<div><div>With the rising incidence and mortality of colorectal cancer, automatic polyp segmentation has gained significant attention. To address the limitations of existing pyramid-based transformer methods in polyp segmentation, specifically their challenges with feature scale diversity and feature fusion, we propose a transformer-based multi-stage feature fusion network (MSFFNet). First, the Contextual Dilation Fusion (CDF) module fuses adjacent multi-layer features and extracts multi-receptive field features, improving adaptability to polyps of different scales and enhancing feature diversity. Second, the Attention-Driven Feature Enhancement (AFE) module suppresses irrelevant background information and strengthens feature representation. Finally, the Dual-path Feature Fusion (DPF) module effectively integrates multi-level features using concatenation and point-wise addition. Extensive experiments on five datasets using four metrics demonstrate the effectiveness and strong generalization ability of the proposed method.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"175 ","pages":"Article 113034"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156849462500345X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the rising incidence and mortality of colorectal cancer, automatic polyp segmentation has gained significant attention. To address the limitations of existing pyramid-based transformer methods in polyp segmentation, specifically their challenges with feature scale diversity and feature fusion, we propose a transformer-based multi-stage feature fusion network (MSFFNet). First, the Contextual Dilation Fusion (CDF) module fuses adjacent multi-layer features and extracts multi-receptive field features, improving adaptability to polyps of different scales and enhancing feature diversity. Second, the Attention-Driven Feature Enhancement (AFE) module suppresses irrelevant background information and strengthens feature representation. Finally, the Dual-path Feature Fusion (DPF) module effectively integrates multi-level features using concatenation and point-wise addition. Extensive experiments on five datasets using four metrics demonstrate the effectiveness and strong generalization ability of the proposed method.
基于多阶段特征融合网络的息肉分割
随着结直肠癌发病率和死亡率的不断上升,息肉的自动分割越来越受到人们的重视。为了解决现有基于金字塔的变压器方法在息肉分割中的局限性,特别是在特征尺度多样性和特征融合方面的挑战,我们提出了一种基于变压器的多阶段特征融合网络(MSFFNet)。首先,上下文扩张融合(Contextual Dilation Fusion, CDF)模块融合相邻多层特征,提取多感受野特征,提高对不同规模息肉的适应性,增强特征多样性;其次,注意驱动特征增强(AFE)模块抑制不相关的背景信息,增强特征表征。最后,双路径特征融合(Dual-path Feature Fusion, DPF)模块使用串联和逐点加法有效地集成了多层次特征。在5个数据集上使用4个指标进行了大量实验,证明了该方法的有效性和较强的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信