TPC track denoising and recognition using convolutional neural networks

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Matěj Gajdoš , Hugo Natal da Luz , Geovane G.A. Souza , Marco Bregant
{"title":"TPC track denoising and recognition using convolutional neural networks","authors":"Matěj Gajdoš ,&nbsp;Hugo Natal da Luz ,&nbsp;Geovane G.A. Souza ,&nbsp;Marco Bregant","doi":"10.1016/j.cpc.2025.109608","DOIUrl":null,"url":null,"abstract":"<div><div>The capability of convolutional neural networks to remove spurious signals caused by electronic noise, microdischarges and other effects from experimental data obtained with Time Projection Chambers is studied. A generator of synthetic data for the training of the neural network is described and its performance is compared with the results obtained with a conventional algorithm. The Physical meaning of the data resulting from the neural network and conventional denoising algorithms is thoroughly analysed, demonstrating the potential of convolutional neural networks in the preparation of raw data for analysis.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"312 ","pages":"Article 109608"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001110","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The capability of convolutional neural networks to remove spurious signals caused by electronic noise, microdischarges and other effects from experimental data obtained with Time Projection Chambers is studied. A generator of synthetic data for the training of the neural network is described and its performance is compared with the results obtained with a conventional algorithm. The Physical meaning of the data resulting from the neural network and conventional denoising algorithms is thoroughly analysed, demonstrating the potential of convolutional neural networks in the preparation of raw data for analysis.
利用卷积神经网络对TPC音轨进行去噪和识别
研究了卷积神经网络去除时间投影室实验数据中由电子噪声、微放电等影响引起的杂散信号的能力。描述了一种用于神经网络训练的合成数据生成器,并将其性能与传统算法的结果进行了比较。从神经网络和传统去噪算法得到的数据的物理意义进行了彻底的分析,展示了卷积神经网络在准备用于分析的原始数据方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信