A. Viswanath , M. Khalil , M.K.A. Khan , W.J. Cantwell , K.A. Khan
{"title":"Hierarchical cubic lattice structures with bending- and stretching-dominated cellular designs for enhanced buckling resistance","authors":"A. Viswanath , M. Khalil , M.K.A. Khan , W.J. Cantwell , K.A. Khan","doi":"10.1016/j.ijlmm.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Buckling is a common failure mode in low-density strut lattices, limiting their mechanical strength and stability. This work presents a novel methodology to design and manufacture lightweight, buckling-resistant strut-based lattice structures by reinforcing buckling-prone members with hierarchical lattice unit cells—either stretching- or bending-dominated—without changing the strut lattice's relative density. Four types of lattice unit cells were examined: plate, honeycomb, strut, and TPMS solids and sheets. These were tested on single-cell cubic lattice columns with square cross-sectional struts. The resulting hierarchical structures were additively manufactured and experimentally evaluated, demonstrating significantly enhanced buckling performance. Design for additive manufacturing principles were applied, and structures with stretching and bending-dominated unit cells achieved higher critical buckling loads, with the square honeycomb cell lattice showing the highest improvement at 179 % over the baseline. This approach broadens opportunities for enhancing low-density strut lattices and developing novel buckling-resistant designs.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 3","pages":"Pages 310-320"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840425000113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Buckling is a common failure mode in low-density strut lattices, limiting their mechanical strength and stability. This work presents a novel methodology to design and manufacture lightweight, buckling-resistant strut-based lattice structures by reinforcing buckling-prone members with hierarchical lattice unit cells—either stretching- or bending-dominated—without changing the strut lattice's relative density. Four types of lattice unit cells were examined: plate, honeycomb, strut, and TPMS solids and sheets. These were tested on single-cell cubic lattice columns with square cross-sectional struts. The resulting hierarchical structures were additively manufactured and experimentally evaluated, demonstrating significantly enhanced buckling performance. Design for additive manufacturing principles were applied, and structures with stretching and bending-dominated unit cells achieved higher critical buckling loads, with the square honeycomb cell lattice showing the highest improvement at 179 % over the baseline. This approach broadens opportunities for enhancing low-density strut lattices and developing novel buckling-resistant designs.