Hierarchical cubic lattice structures with bending- and stretching-dominated cellular designs for enhanced buckling resistance

Q1 Engineering
A. Viswanath , M. Khalil , M.K.A. Khan , W.J. Cantwell , K.A. Khan
{"title":"Hierarchical cubic lattice structures with bending- and stretching-dominated cellular designs for enhanced buckling resistance","authors":"A. Viswanath ,&nbsp;M. Khalil ,&nbsp;M.K.A. Khan ,&nbsp;W.J. Cantwell ,&nbsp;K.A. Khan","doi":"10.1016/j.ijlmm.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Buckling is a common failure mode in low-density strut lattices, limiting their mechanical strength and stability. This work presents a novel methodology to design and manufacture lightweight, buckling-resistant strut-based lattice structures by reinforcing buckling-prone members with hierarchical lattice unit cells—either stretching- or bending-dominated—without changing the strut lattice's relative density. Four types of lattice unit cells were examined: plate, honeycomb, strut, and TPMS solids and sheets. These were tested on single-cell cubic lattice columns with square cross-sectional struts. The resulting hierarchical structures were additively manufactured and experimentally evaluated, demonstrating significantly enhanced buckling performance. Design for additive manufacturing principles were applied, and structures with stretching and bending-dominated unit cells achieved higher critical buckling loads, with the square honeycomb cell lattice showing the highest improvement at 179 % over the baseline. This approach broadens opportunities for enhancing low-density strut lattices and developing novel buckling-resistant designs.</div></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":"8 3","pages":"Pages 310-320"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840425000113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Buckling is a common failure mode in low-density strut lattices, limiting their mechanical strength and stability. This work presents a novel methodology to design and manufacture lightweight, buckling-resistant strut-based lattice structures by reinforcing buckling-prone members with hierarchical lattice unit cells—either stretching- or bending-dominated—without changing the strut lattice's relative density. Four types of lattice unit cells were examined: plate, honeycomb, strut, and TPMS solids and sheets. These were tested on single-cell cubic lattice columns with square cross-sectional struts. The resulting hierarchical structures were additively manufactured and experimentally evaluated, demonstrating significantly enhanced buckling performance. Design for additive manufacturing principles were applied, and structures with stretching and bending-dominated unit cells achieved higher critical buckling loads, with the square honeycomb cell lattice showing the highest improvement at 179 % over the baseline. This approach broadens opportunities for enhancing low-density strut lattices and developing novel buckling-resistant designs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信