Combined cellular and gene therapy to treat primary ciliary dyskinesia

IF 0.5 4区 医学 Q4 RESPIRATORY SYSTEM
C. Bourdais , M. Nadaud , A. Coeur , F. Foisset , E. Ahmed , I. Vachier , A. Bourdin , S. Assou , J. De Vos
{"title":"Combined cellular and gene therapy to treat primary ciliary dyskinesia","authors":"C. Bourdais ,&nbsp;M. Nadaud ,&nbsp;A. Coeur ,&nbsp;F. Foisset ,&nbsp;E. Ahmed ,&nbsp;I. Vachier ,&nbsp;A. Bourdin ,&nbsp;S. Assou ,&nbsp;J. De Vos","doi":"10.1016/j.rmr.2025.02.026","DOIUrl":null,"url":null,"abstract":"<div><div>Primary Ciliary Dyskinesia (PCD) is a genetic disease caused by mutations that alter cilia beating, including in the respiratory airways. This results in poor mucus clearance, severe morbidity, and increased mortality. We hypothesized that bronchial cilia beating can be restored using genetically corrected iPSC differentiated into air - liquid interface bronchial epithelium model (iALI) for autologous cell therapy. We have previously demonstrated that corrected cells derived from a PCD patient iPS line can be differentiated into iALI with functional ciliary beating. The current aim of the project is to evaluate the engraftment potential of these corrected cells and their ability to repair the pathological model post-engraftment. Several key issues need to be addressed identifying competent cells for bronchial engraftment, exploring various strategies to pre-treat the bronchial epithelium, and assessing the recovery of the ciliary beating recovery to assure bronchial repair.</div><div>Our team has established the differentiation of iPSCs into iALI. We have generated a PCD patient iPSC line using Sendai viruses, a corresponding CRISPR/Cas9 corrected cell line, as well a wild-type iPSC line and its CRISPR/Cas9 mutated counterpart. We also generated a GFP-iPSC line that expresses the fluorescent GFP protein under the human elongation factor 1 alpha promoter (EF1a), which allows us to track the engraftment of GFP-labeled bronchial stem cells in both control and mutated iALI models. Our results suggest that lung progenitors at the ventralized anterior foregut endoderm stage could be the most efficient cells for engraftment. Their self-renewal capability and ability to differentiate into various cell types of the bronchial epithelium are promising for developing a long-term and effective therapy. Regarding bronchial erosion, we found that promoting cell engraftment is crucial due to the barrier function of the intact bronchial epithelium and the lack of selective advantage of corrected cells. Various chemical and enzymatic strategies have shown potential, but their safety for in-vivo use needs further assessment. Furthermore, GFP-expressing engrafted cells displaying cilia suggest successful differentiation into ciliated cells, though functional recovery still requires confirmation.</div><div>In conclusion, the engraftment of corrected lung progenitors into eroded bronchial epithelium appears to be a promising therapeutic strategy to PCD. Next step of the project involves developing this therapy for in-vivo application, assessing its safety and efficacy in an immunodeficient mini-pig model.</div></div>","PeriodicalId":21548,"journal":{"name":"Revue des maladies respiratoires","volume":"42 4","pages":"Pages 194-195"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue des maladies respiratoires","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0761842525000695","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Primary Ciliary Dyskinesia (PCD) is a genetic disease caused by mutations that alter cilia beating, including in the respiratory airways. This results in poor mucus clearance, severe morbidity, and increased mortality. We hypothesized that bronchial cilia beating can be restored using genetically corrected iPSC differentiated into air - liquid interface bronchial epithelium model (iALI) for autologous cell therapy. We have previously demonstrated that corrected cells derived from a PCD patient iPS line can be differentiated into iALI with functional ciliary beating. The current aim of the project is to evaluate the engraftment potential of these corrected cells and their ability to repair the pathological model post-engraftment. Several key issues need to be addressed identifying competent cells for bronchial engraftment, exploring various strategies to pre-treat the bronchial epithelium, and assessing the recovery of the ciliary beating recovery to assure bronchial repair.
Our team has established the differentiation of iPSCs into iALI. We have generated a PCD patient iPSC line using Sendai viruses, a corresponding CRISPR/Cas9 corrected cell line, as well a wild-type iPSC line and its CRISPR/Cas9 mutated counterpart. We also generated a GFP-iPSC line that expresses the fluorescent GFP protein under the human elongation factor 1 alpha promoter (EF1a), which allows us to track the engraftment of GFP-labeled bronchial stem cells in both control and mutated iALI models. Our results suggest that lung progenitors at the ventralized anterior foregut endoderm stage could be the most efficient cells for engraftment. Their self-renewal capability and ability to differentiate into various cell types of the bronchial epithelium are promising for developing a long-term and effective therapy. Regarding bronchial erosion, we found that promoting cell engraftment is crucial due to the barrier function of the intact bronchial epithelium and the lack of selective advantage of corrected cells. Various chemical and enzymatic strategies have shown potential, but their safety for in-vivo use needs further assessment. Furthermore, GFP-expressing engrafted cells displaying cilia suggest successful differentiation into ciliated cells, though functional recovery still requires confirmation.
In conclusion, the engraftment of corrected lung progenitors into eroded bronchial epithelium appears to be a promising therapeutic strategy to PCD. Next step of the project involves developing this therapy for in-vivo application, assessing its safety and efficacy in an immunodeficient mini-pig model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revue des maladies respiratoires
Revue des maladies respiratoires 医学-呼吸系统
CiteScore
1.10
自引率
16.70%
发文量
168
审稿时长
4-8 weeks
期刊介绍: La Revue des Maladies Respiratoires est l''organe officiel d''expression scientifique de la Société de Pneumologie de Langue Française (SPLF). Il s''agit d''un média professionnel francophone, à vocation internationale et accessible ici. La Revue des Maladies Respiratoires est un outil de formation professionnelle post-universitaire pour l''ensemble de la communauté pneumologique francophone. Elle publie sur son site différentes variétés d''articles scientifiques concernant la Pneumologie : - Editoriaux, - Articles originaux, - Revues générales, - Articles de synthèses, - Recommandations d''experts et textes de consensus, - Séries thématiques, - Cas cliniques, - Articles « images et diagnostics », - Fiches techniques, - Lettres à la rédaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信