Tingting Nong , Zhichao Zhang , Tao Wang , Wenke Zhang , Jingyu Tan , Eric Wai Ming Lee , Meng Shi
{"title":"Dynamics analysis of pedestrian movement on slopes: Modelling, simulations and experiments","authors":"Tingting Nong , Zhichao Zhang , Tao Wang , Wenke Zhang , Jingyu Tan , Eric Wai Ming Lee , Meng Shi","doi":"10.1016/j.physa.2025.130589","DOIUrl":null,"url":null,"abstract":"<div><div>Inclined structures play a crucial role in urban spatial planning, but inadequate crowd management often leads to significant safety risks. To better understand pedestrian dynamics on slopes and provide insights for effective crowd management, this study proposes a multi-factor floor field cellular automaton model for slope movement that integrates microscopic and mesoscopic scales. The model introduces a speed-density model that accounts for pedestrian heterogeneity, travel purposes, crowd density, and regional differences to establish the fundamental mechanism of speed variation. Additionally, the model establishes a function to evaluate pedestrian speed variations on slopes by incorporating the slope angle, the angle of movement deviation, and the distance travelled, with the function being calibrated based on empirical data. The results show that pedestrian speed variation on slopes follows a non-linear, accumulative pattern, with acceleration and deceleration effects becoming more pronounced as distance increases. The impact of slope angle on pedestrian speed variation trend is also non-linear, with 7° as the threshold. The initial speed of pedestrians, pedestrian density, and slope configuration all significantly affect the movement speed and efficiency of pedestrians on slopes. The proposed model was evaluated through real-world slope experiments and found that the simulation results closely match the experimental results. The findings illustrate that the proposed model has the potential to provide insights for analysing pedestrian dynamics on slopes movement scenarios. This study provides a model for evaluating pedestrian movement on slopes, with potential applications in optimising urban design, improving emergency evacuation strategies, and enhancing crowd management in high-density areas.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"668 ","pages":"Article 130589"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125002419","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inclined structures play a crucial role in urban spatial planning, but inadequate crowd management often leads to significant safety risks. To better understand pedestrian dynamics on slopes and provide insights for effective crowd management, this study proposes a multi-factor floor field cellular automaton model for slope movement that integrates microscopic and mesoscopic scales. The model introduces a speed-density model that accounts for pedestrian heterogeneity, travel purposes, crowd density, and regional differences to establish the fundamental mechanism of speed variation. Additionally, the model establishes a function to evaluate pedestrian speed variations on slopes by incorporating the slope angle, the angle of movement deviation, and the distance travelled, with the function being calibrated based on empirical data. The results show that pedestrian speed variation on slopes follows a non-linear, accumulative pattern, with acceleration and deceleration effects becoming more pronounced as distance increases. The impact of slope angle on pedestrian speed variation trend is also non-linear, with 7° as the threshold. The initial speed of pedestrians, pedestrian density, and slope configuration all significantly affect the movement speed and efficiency of pedestrians on slopes. The proposed model was evaluated through real-world slope experiments and found that the simulation results closely match the experimental results. The findings illustrate that the proposed model has the potential to provide insights for analysing pedestrian dynamics on slopes movement scenarios. This study provides a model for evaluating pedestrian movement on slopes, with potential applications in optimising urban design, improving emergency evacuation strategies, and enhancing crowd management in high-density areas.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.