Dynamics analysis of pedestrian movement on slopes: Modelling, simulations and experiments

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Tingting Nong , Zhichao Zhang , Tao Wang , Wenke Zhang , Jingyu Tan , Eric Wai Ming Lee , Meng Shi
{"title":"Dynamics analysis of pedestrian movement on slopes: Modelling, simulations and experiments","authors":"Tingting Nong ,&nbsp;Zhichao Zhang ,&nbsp;Tao Wang ,&nbsp;Wenke Zhang ,&nbsp;Jingyu Tan ,&nbsp;Eric Wai Ming Lee ,&nbsp;Meng Shi","doi":"10.1016/j.physa.2025.130589","DOIUrl":null,"url":null,"abstract":"<div><div>Inclined structures play a crucial role in urban spatial planning, but inadequate crowd management often leads to significant safety risks. To better understand pedestrian dynamics on slopes and provide insights for effective crowd management, this study proposes a multi-factor floor field cellular automaton model for slope movement that integrates microscopic and mesoscopic scales. The model introduces a speed-density model that accounts for pedestrian heterogeneity, travel purposes, crowd density, and regional differences to establish the fundamental mechanism of speed variation. Additionally, the model establishes a function to evaluate pedestrian speed variations on slopes by incorporating the slope angle, the angle of movement deviation, and the distance travelled, with the function being calibrated based on empirical data. The results show that pedestrian speed variation on slopes follows a non-linear, accumulative pattern, with acceleration and deceleration effects becoming more pronounced as distance increases. The impact of slope angle on pedestrian speed variation trend is also non-linear, with 7° as the threshold. The initial speed of pedestrians, pedestrian density, and slope configuration all significantly affect the movement speed and efficiency of pedestrians on slopes. The proposed model was evaluated through real-world slope experiments and found that the simulation results closely match the experimental results. The findings illustrate that the proposed model has the potential to provide insights for analysing pedestrian dynamics on slopes movement scenarios. This study provides a model for evaluating pedestrian movement on slopes, with potential applications in optimising urban design, improving emergency evacuation strategies, and enhancing crowd management in high-density areas.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"668 ","pages":"Article 130589"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125002419","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inclined structures play a crucial role in urban spatial planning, but inadequate crowd management often leads to significant safety risks. To better understand pedestrian dynamics on slopes and provide insights for effective crowd management, this study proposes a multi-factor floor field cellular automaton model for slope movement that integrates microscopic and mesoscopic scales. The model introduces a speed-density model that accounts for pedestrian heterogeneity, travel purposes, crowd density, and regional differences to establish the fundamental mechanism of speed variation. Additionally, the model establishes a function to evaluate pedestrian speed variations on slopes by incorporating the slope angle, the angle of movement deviation, and the distance travelled, with the function being calibrated based on empirical data. The results show that pedestrian speed variation on slopes follows a non-linear, accumulative pattern, with acceleration and deceleration effects becoming more pronounced as distance increases. The impact of slope angle on pedestrian speed variation trend is also non-linear, with 7° as the threshold. The initial speed of pedestrians, pedestrian density, and slope configuration all significantly affect the movement speed and efficiency of pedestrians on slopes. The proposed model was evaluated through real-world slope experiments and found that the simulation results closely match the experimental results. The findings illustrate that the proposed model has the potential to provide insights for analysing pedestrian dynamics on slopes movement scenarios. This study provides a model for evaluating pedestrian movement on slopes, with potential applications in optimising urban design, improving emergency evacuation strategies, and enhancing crowd management in high-density areas.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信