Don’t go chasing waterfalls: Multiple factor prediction of injuries in a performance context

Melanie I. Stuckey, Dean Kriellaars
{"title":"Don’t go chasing waterfalls: Multiple factor prediction of injuries in a performance context","authors":"Melanie I. Stuckey,&nbsp;Dean Kriellaars","doi":"10.1016/j.jsampl.2025.100097","DOIUrl":null,"url":null,"abstract":"<div><div>Injury surveillance informs risk management strategies for athletes and performing artists yet the predictive value of multiple factors is understudied. This study analyzed demographic, sleep, fatigue, body composition, symmetry/proportionality, and psychological data from a cohort of circus arts students to predict injury presence and duration using regression models. Demographics alone significantly predicted injury presence (R<sup>2</sup> ​= ​0.344) and duration (R<sup>2</sup> ​= ​0.247). Additional factors explained 1.5–9.0 ​% of variation for injury presence and 0.0–7.8 ​% for duration. These findings inform the development of holistic risk management strategies for performing artists and athletes and cautions against chasing single predictor variables.</div></div>","PeriodicalId":74029,"journal":{"name":"JSAMS plus","volume":"5 ","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSAMS plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772696725000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Injury surveillance informs risk management strategies for athletes and performing artists yet the predictive value of multiple factors is understudied. This study analyzed demographic, sleep, fatigue, body composition, symmetry/proportionality, and psychological data from a cohort of circus arts students to predict injury presence and duration using regression models. Demographics alone significantly predicted injury presence (R2 ​= ​0.344) and duration (R2 ​= ​0.247). Additional factors explained 1.5–9.0 ​% of variation for injury presence and 0.0–7.8 ​% for duration. These findings inform the development of holistic risk management strategies for performing artists and athletes and cautions against chasing single predictor variables.
不要去追逐瀑布:在表演环境中对受伤的多因素预测
损伤监测为运动员和表演艺术家提供了风险管理策略,但多种因素的预测价值尚未得到充分研究。本研究分析了一群马戏艺术学生的人口统计学、睡眠、疲劳、身体组成、对称性/比例性和心理数据,使用回归模型预测损伤的存在和持续时间。仅人口统计学就能显著预测损伤存在(R2 = 0.344)和持续时间(R2 = 0.247)。其他因素解释了1.5% - 9.0%的损伤存在变异和0.08% - 7.8%的持续时间变异。这些发现为表演艺术家和运动员的整体风险管理策略的发展提供了信息,并警告不要追逐单一的预测变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信