Miao Chen , Lei Si , Jialiang Dai , Yang Liu , Zhongbin Wang , Dong Wei , Xin Li
{"title":"A variable structure robust control strategy for automatic drilling tools loading and unloading system","authors":"Miao Chen , Lei Si , Jialiang Dai , Yang Liu , Zhongbin Wang , Dong Wei , Xin Li","doi":"10.1016/j.conengprac.2025.106340","DOIUrl":null,"url":null,"abstract":"<div><div>Drilling tools loading and unloading for drilling machine is a labor-intensive task. The automatic loading and unloading function of the drilling machine can prominently lessen the labor intensity borne by workers and serves as a key requisite for the full automation of underground drilling equipment. The drilling tools loading and unloading system (DTLUS) is subject to a relatively large load, leading to fluctuations in the hydraulic system’s pressure and flow rate. In view of this, a robust control strategy based on the sliding mode controller is proposed. Aiming at the requirement of suppressing chattering during the operation of the sliding mode controller (SMC), a fuzzy neural network (FNN) parameter adjustment method based on the variable structure control framework is designed, which is intended to enhance the stability and control accuracy of the system, so as to better cope with the complex working conditions of the DTLUS and ensure its efficient and stable operation. The experimental results indicate that the designed controller can reduce mechanical impact and enhance the efficiency of drilling tools loading and unloading.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"161 ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125001030","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Drilling tools loading and unloading for drilling machine is a labor-intensive task. The automatic loading and unloading function of the drilling machine can prominently lessen the labor intensity borne by workers and serves as a key requisite for the full automation of underground drilling equipment. The drilling tools loading and unloading system (DTLUS) is subject to a relatively large load, leading to fluctuations in the hydraulic system’s pressure and flow rate. In view of this, a robust control strategy based on the sliding mode controller is proposed. Aiming at the requirement of suppressing chattering during the operation of the sliding mode controller (SMC), a fuzzy neural network (FNN) parameter adjustment method based on the variable structure control framework is designed, which is intended to enhance the stability and control accuracy of the system, so as to better cope with the complex working conditions of the DTLUS and ensure its efficient and stable operation. The experimental results indicate that the designed controller can reduce mechanical impact and enhance the efficiency of drilling tools loading and unloading.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.