Burcu Özcan , İnci Uludağ Anıl , Mehmet Altay Ünal , Fikret Arı , Mustafa Kemal Sezgintürk , Sibel Ayşıl Özkan
{"title":"An innovative and mass-sensitive quartz tuning fork (QTF) biosensor for GFAP detection: A novel approach for traumatic brain injury diagnosis","authors":"Burcu Özcan , İnci Uludağ Anıl , Mehmet Altay Ünal , Fikret Arı , Mustafa Kemal Sezgintürk , Sibel Ayşıl Özkan","doi":"10.1016/j.biosx.2025.100614","DOIUrl":null,"url":null,"abstract":"<div><div>The early diagnosis and management of traumatic brain injury (TBI) are dependent upon the early and precise detection of glial fibrillary acidic protein (GFAP). In this investigation, a novel biosensor based on quartz tuning forks (QTF) was introduced and functionalized with 11-mercaptoundecanoic acid (11-MUA). This biosensor is designed to facilitate the highly sensitive and selective detection of GFAP in human serum. In contrast to conventional neuroimaging methods, which are resource-intensive and frequently inaccessible in emergency situations, this innovative biosensor offers a portable, cost-effective, and efficient alternative for rapid GFAP measurement. The detection range of the system is 0.05 fg mL<sup>−1</sup> to 25 fg mL<sup>−1</sup>. The Atomic Force Microscopy (AFM) was utilized to visualize the morphology of the QTF surface during the immobilization steps of the sensor. The developed biosensor presented advantages such as ability to determine GFAP concentrations at femtogram level, reproducibility and repeatability (standard deviation: ±0.0935966 Hz, and coefficient of variation: 7.91 %). This study highlights a significant progression in biosensing technology, providing an exceptionally sensitive and scalable platform for diagnosing neurological disorders, with potential uses in point-of-care environments.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100614"},"PeriodicalIF":10.6100,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259013702500041X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The early diagnosis and management of traumatic brain injury (TBI) are dependent upon the early and precise detection of glial fibrillary acidic protein (GFAP). In this investigation, a novel biosensor based on quartz tuning forks (QTF) was introduced and functionalized with 11-mercaptoundecanoic acid (11-MUA). This biosensor is designed to facilitate the highly sensitive and selective detection of GFAP in human serum. In contrast to conventional neuroimaging methods, which are resource-intensive and frequently inaccessible in emergency situations, this innovative biosensor offers a portable, cost-effective, and efficient alternative for rapid GFAP measurement. The detection range of the system is 0.05 fg mL−1 to 25 fg mL−1. The Atomic Force Microscopy (AFM) was utilized to visualize the morphology of the QTF surface during the immobilization steps of the sensor. The developed biosensor presented advantages such as ability to determine GFAP concentrations at femtogram level, reproducibility and repeatability (standard deviation: ±0.0935966 Hz, and coefficient of variation: 7.91 %). This study highlights a significant progression in biosensing technology, providing an exceptionally sensitive and scalable platform for diagnosing neurological disorders, with potential uses in point-of-care environments.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.