An innovative and mass-sensitive quartz tuning fork (QTF) biosensor for GFAP detection: A novel approach for traumatic brain injury diagnosis

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
Burcu Özcan , İnci Uludağ Anıl , Mehmet Altay Ünal , Fikret Arı , Mustafa Kemal Sezgintürk , Sibel Ayşıl Özkan
{"title":"An innovative and mass-sensitive quartz tuning fork (QTF) biosensor for GFAP detection: A novel approach for traumatic brain injury diagnosis","authors":"Burcu Özcan ,&nbsp;İnci Uludağ Anıl ,&nbsp;Mehmet Altay Ünal ,&nbsp;Fikret Arı ,&nbsp;Mustafa Kemal Sezgintürk ,&nbsp;Sibel Ayşıl Özkan","doi":"10.1016/j.biosx.2025.100614","DOIUrl":null,"url":null,"abstract":"<div><div>The early diagnosis and management of traumatic brain injury (TBI) are dependent upon the early and precise detection of glial fibrillary acidic protein (GFAP). In this investigation, a novel biosensor based on quartz tuning forks (QTF) was introduced and functionalized with 11-mercaptoundecanoic acid (11-MUA). This biosensor is designed to facilitate the highly sensitive and selective detection of GFAP in human serum. In contrast to conventional neuroimaging methods, which are resource-intensive and frequently inaccessible in emergency situations, this innovative biosensor offers a portable, cost-effective, and efficient alternative for rapid GFAP measurement. The detection range of the system is 0.05 fg mL<sup>−1</sup> to 25 fg mL<sup>−1</sup>. The Atomic Force Microscopy (AFM) was utilized to visualize the morphology of the QTF surface during the immobilization steps of the sensor. The developed biosensor presented advantages such as ability to determine GFAP concentrations at femtogram level, reproducibility and repeatability (standard deviation: ±0.0935966 Hz, and coefficient of variation: 7.91 %). This study highlights a significant progression in biosensing technology, providing an exceptionally sensitive and scalable platform for diagnosing neurological disorders, with potential uses in point-of-care environments.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100614"},"PeriodicalIF":10.6100,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259013702500041X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The early diagnosis and management of traumatic brain injury (TBI) are dependent upon the early and precise detection of glial fibrillary acidic protein (GFAP). In this investigation, a novel biosensor based on quartz tuning forks (QTF) was introduced and functionalized with 11-mercaptoundecanoic acid (11-MUA). This biosensor is designed to facilitate the highly sensitive and selective detection of GFAP in human serum. In contrast to conventional neuroimaging methods, which are resource-intensive and frequently inaccessible in emergency situations, this innovative biosensor offers a portable, cost-effective, and efficient alternative for rapid GFAP measurement. The detection range of the system is 0.05 fg mL−1 to 25 fg mL−1. The Atomic Force Microscopy (AFM) was utilized to visualize the morphology of the QTF surface during the immobilization steps of the sensor. The developed biosensor presented advantages such as ability to determine GFAP concentrations at femtogram level, reproducibility and repeatability (standard deviation: ±0.0935966 Hz, and coefficient of variation: 7.91 %). This study highlights a significant progression in biosensing technology, providing an exceptionally sensitive and scalable platform for diagnosing neurological disorders, with potential uses in point-of-care environments.
用于GFAP检测的创新性质量敏感石英音叉(QTF)生物传感器:一种创伤性脑损伤诊断的新方法
创伤性脑损伤(TBI)的早期诊断和治疗依赖于胶质原纤维酸性蛋白(GFAP)的早期准确检测。本文介绍了一种基于石英音叉(QTF)的新型生物传感器,并采用11-巯基十四酸(11-MUA)进行了功能化。该生物传感器设计用于促进高灵敏度和选择性地检测人血清中的GFAP。传统的神经成像方法是资源密集型的,在紧急情况下经常无法使用,与之相反,这种创新的生物传感器为快速测量GFAP提供了一种便携式、经济高效的替代方案。系统检测范围为0.05 fg mL−1 ~ 25 fg mL−1。利用原子力显微镜(AFM)观察传感器固定过程中QTF表面的形貌。所研制的生物传感器具有飞图水平测定GFAP浓度、重现性和可重复性(标准偏差:±0.0935966 Hz,变异系数:7.91%)等优点。这项研究强调了生物传感技术的重大进展,为诊断神经系统疾病提供了一个异常敏感和可扩展的平台,在护理点环境中具有潜在的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信