{"title":"Chemodiversity of sulfur-containing metabolites emphasizing the ecophysiology of Allium plants and the developmental innovations in bulb formation","authors":"Mustafa Bulut","doi":"10.1016/j.pbi.2025.102724","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfur (S) metabolism has played a critical role in the evolution of life, serving as an energy source for early biochemical pathways like dissimilatory S reduction and anoxygenic photosynthesis. Across kingdoms, S metabolism displays remarkable diversity. S-containing metabolites like glucosinolates (GLSs) in Brassicaceae and <em>S</em>-alk(en)ylcysteine sulfoxides in Allium species illustrate the ecological and evolutionary significance of S-containing compounds. These metabolites contribute to defense, homeostasis, and ecological interactions, with mechanisms like enzymatic hydrolysis releasing bioactive molecules such as allicin. Further, advances in transcriptomics and biochemical studies have revealed the genetic underpinnings of S metabolism and specialized pathways in bulb-forming Allium species. The role extends to ecological interactions by modulating S-associated defense pathways. This integrative understanding of S metabolism underscores its evolutionary, physiological, and ecological importance.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102724"},"PeriodicalIF":8.3000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136952662500038X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur (S) metabolism has played a critical role in the evolution of life, serving as an energy source for early biochemical pathways like dissimilatory S reduction and anoxygenic photosynthesis. Across kingdoms, S metabolism displays remarkable diversity. S-containing metabolites like glucosinolates (GLSs) in Brassicaceae and S-alk(en)ylcysteine sulfoxides in Allium species illustrate the ecological and evolutionary significance of S-containing compounds. These metabolites contribute to defense, homeostasis, and ecological interactions, with mechanisms like enzymatic hydrolysis releasing bioactive molecules such as allicin. Further, advances in transcriptomics and biochemical studies have revealed the genetic underpinnings of S metabolism and specialized pathways in bulb-forming Allium species. The role extends to ecological interactions by modulating S-associated defense pathways. This integrative understanding of S metabolism underscores its evolutionary, physiological, and ecological importance.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.