Advancing population-targeted urban sensing: A comparative study on mobile and static sensing paradigms

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES
Yuan-Qiao Hou , Xiao-Jian Chen , Zhou Huang , Xia Peng , Yu Liu
{"title":"Advancing population-targeted urban sensing: A comparative study on mobile and static sensing paradigms","authors":"Yuan-Qiao Hou ,&nbsp;Xiao-Jian Chen ,&nbsp;Zhou Huang ,&nbsp;Xia Peng ,&nbsp;Yu Liu","doi":"10.1016/j.compenvurbsys.2025.102288","DOIUrl":null,"url":null,"abstract":"<div><div>To evaluate human exposure to environmental factors, sufficient population-targeted sensing power of sensor carriers is crucial. However, the traditional static sensing approach is constrained by its limited coverage. Recently, equipping moving vehicles with sensors has emerged as a new approach. However, a quantitative comparison between mobile and traditional static sensing is still lacking. Using empirical taxi trajectory and population data in Beijing and Xiamen, we found that while a small number of taxi-based mobile sensors can cover a larger portion of the population, well-located static sensors eventually surpass mobile sensors in coverage as their number increases. In addition, a higher required frequency reduces the coverage of mobile sensors, whereas a higher cost ratio between static and mobile sensors reduces the coverage of static sites. Taxis provide extensive spatial coverage but with some uncertainty, especially in peripheral areas, whereas static sensors ensure localized and stable coverage. Based on the advantage of taxis and static sites, we propose an effective greedy-add-guided strengthen elitist genetic algorithm to determine the optimal combination of static and mobile sensors. The key idea is to position static sensors in areas with relatively low taxi visit probabilities but high population density. The results indicate that this optimal combination achieves higher population coverage compared to using taxis alone. It addresses the uncertainty in taxi coverage and significantly reduces the number of sensors required. These results support the feasibility of using taxis as a sensing paradigm and further highlight the potential of combining these two sensing paradigms in population-targeted sensing applications.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"119 ","pages":"Article 102288"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971525000419","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

To evaluate human exposure to environmental factors, sufficient population-targeted sensing power of sensor carriers is crucial. However, the traditional static sensing approach is constrained by its limited coverage. Recently, equipping moving vehicles with sensors has emerged as a new approach. However, a quantitative comparison between mobile and traditional static sensing is still lacking. Using empirical taxi trajectory and population data in Beijing and Xiamen, we found that while a small number of taxi-based mobile sensors can cover a larger portion of the population, well-located static sensors eventually surpass mobile sensors in coverage as their number increases. In addition, a higher required frequency reduces the coverage of mobile sensors, whereas a higher cost ratio between static and mobile sensors reduces the coverage of static sites. Taxis provide extensive spatial coverage but with some uncertainty, especially in peripheral areas, whereas static sensors ensure localized and stable coverage. Based on the advantage of taxis and static sites, we propose an effective greedy-add-guided strengthen elitist genetic algorithm to determine the optimal combination of static and mobile sensors. The key idea is to position static sensors in areas with relatively low taxi visit probabilities but high population density. The results indicate that this optimal combination achieves higher population coverage compared to using taxis alone. It addresses the uncertainty in taxi coverage and significantly reduces the number of sensors required. These results support the feasibility of using taxis as a sensing paradigm and further highlight the potential of combining these two sensing paradigms in population-targeted sensing applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信