Design and construction of electronic transport layer based on organic small molecule for inverted perovskite solar cells

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qingbin Li , Cen Zhang , Lingwei Xue , Binbin Wang , Yueyue Lv , Qingzhi Yan
{"title":"Design and construction of electronic transport layer based on organic small molecule for inverted perovskite solar cells","authors":"Qingbin Li ,&nbsp;Cen Zhang ,&nbsp;Lingwei Xue ,&nbsp;Binbin Wang ,&nbsp;Yueyue Lv ,&nbsp;Qingzhi Yan","doi":"10.1016/j.materresbull.2025.113471","DOIUrl":null,"url":null,"abstract":"<div><div>An effective way to prepare efficient and stable organic electronic transport layer (ETL) to solve the problems such as interface charge recombination, electrons extraction and transport, and poor interface contact of perovskite solar cells (PSCs). Here, a small molecule, AQ<sub>X</sub>-OCH<sub>2</sub>CF<sub>3</sub>, termed AQF, is designed, synthesized, and incorporated into [6,6]-Phenyl C<sub>61</sub>-butyric acid methyl ester (PCBM) as ETL for the fabrication of inverted PSCs. Multiple experimental tests confirm that AQF can effectively inhibit the charge recombination, optimize the electrons extraction and transport, and improve contact between ETL and perovskite layer. Consequently, the PSCs with PCBM: AQF as ETL attain a significant power conversion efficiency (PCE) of 18.61 %, accompanied by a small hysteresis effect. The devices retain &gt;90 % of their initial PCEs after over 1000 h operating at maximum power point under one sun illumination in moist air atmosphere. This study provides a simple and effective method to improve efficiency and stability.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"189 ","pages":"Article 113471"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825001795","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An effective way to prepare efficient and stable organic electronic transport layer (ETL) to solve the problems such as interface charge recombination, electrons extraction and transport, and poor interface contact of perovskite solar cells (PSCs). Here, a small molecule, AQX-OCH2CF3, termed AQF, is designed, synthesized, and incorporated into [6,6]-Phenyl C61-butyric acid methyl ester (PCBM) as ETL for the fabrication of inverted PSCs. Multiple experimental tests confirm that AQF can effectively inhibit the charge recombination, optimize the electrons extraction and transport, and improve contact between ETL and perovskite layer. Consequently, the PSCs with PCBM: AQF as ETL attain a significant power conversion efficiency (PCE) of 18.61 %, accompanied by a small hysteresis effect. The devices retain >90 % of their initial PCEs after over 1000 h operating at maximum power point under one sun illumination in moist air atmosphere. This study provides a simple and effective method to improve efficiency and stability.

Abstract Image

基于有机小分子的倒钙钛矿太阳能电池电子传输层的设计与构建
为解决钙钛矿太阳能电池(PSCs)界面电荷复合、电子萃取和输运、界面接触不良等问题,制备高效稳定的有机电子输运层(ETL)提供了有效途径。本文设计、合成了一种小分子AQX-OCH2CF3,称为AQF,并将其掺入[6,6]-苯基c61 -丁酸甲酯(PCBM)中作为ETL,用于制备倒置psc。多次实验测试证实,AQF能有效抑制电荷复合,优化电子的提取和输运,改善ETL与钙钛矿层的接触。因此,以PCBM: AQF作为ETL的psc获得了18.61%的显著功率转换效率(PCE),并伴有较小的滞后效应。在潮湿的空气环境中,在一次阳光照射下,以最大功率点运行超过1000小时后,设备保留了90%的初始pce。本研究提供了一种简单有效的方法来提高效率和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信