{"title":"Evaluating comprehensive watershed management sustainability based on the emergy ecological footprint model: A case study of Hainan Island, China","authors":"Xudong Lu , Jiadong Chen , Jianchao Guo , Hui Wu , Qin Zuo , Yizhuang Chen , Xian Huang , Shi Qi","doi":"10.1016/j.ecolmodel.2025.111120","DOIUrl":null,"url":null,"abstract":"<div><div>Comprehensive watershed management, which realizes the protection, optimal utilization and ecological restoration of regional soil and water resources is the primary method for controlling soil and water loss in China. However, the deployment of soil erosion control measures requires many resources that increase the environmental load and thus impact ecosystem sustainability. In this study, an emergy ecological footprint model based on emergy theory was developed, and to assess the sustainability of a comprehensive watershed management ecosystem on Hainan Island, China. The results show that: (1) Among the input resources, the emergy ecological footprint (EEF) of machinery was the largest, at 3213.89 hm²; among the construction resources, high-strength materials such as stone, concrete and steel bars were mainly used, and the EEF was greater than 60 %. (2) The primary sources of EEF for comprehensive watershed management were engineering measures project (8554.33 hm²), at >92 %. Gulley erosion control (GEC) was the largest source, followed by slope water works (SWW) and field roads (FR). (3) Renewable resources provide the main ecological carrying capacity (ECC) of the comprehensive watershed management ecosystem; however, the sum of ecological and economic benefit ECCs is 23.92 %. (4) Initially, the ecological profit and loss of the comprehensive watershed management ecosystem (CWME) was −7099.81 hm², and the ecological footprint intensity was 4.28, indicating an ecological deficit, which is not conducive to sustainable development. However, an ecological turning point occurred in 2025: the cumulative ECC exceeded the cumulative EEF, at which point CWME achieved an ecological surplus. Therefore, although the preconstruction period generates considerable ecological pressure, overall, comprehensive watershed management supports sustainable development of the ecological environment. This study provides new trade-off ideas for ecological restoration projects such as comprehensive watershed management.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"505 ","pages":"Article 111120"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025001061","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Comprehensive watershed management, which realizes the protection, optimal utilization and ecological restoration of regional soil and water resources is the primary method for controlling soil and water loss in China. However, the deployment of soil erosion control measures requires many resources that increase the environmental load and thus impact ecosystem sustainability. In this study, an emergy ecological footprint model based on emergy theory was developed, and to assess the sustainability of a comprehensive watershed management ecosystem on Hainan Island, China. The results show that: (1) Among the input resources, the emergy ecological footprint (EEF) of machinery was the largest, at 3213.89 hm²; among the construction resources, high-strength materials such as stone, concrete and steel bars were mainly used, and the EEF was greater than 60 %. (2) The primary sources of EEF for comprehensive watershed management were engineering measures project (8554.33 hm²), at >92 %. Gulley erosion control (GEC) was the largest source, followed by slope water works (SWW) and field roads (FR). (3) Renewable resources provide the main ecological carrying capacity (ECC) of the comprehensive watershed management ecosystem; however, the sum of ecological and economic benefit ECCs is 23.92 %. (4) Initially, the ecological profit and loss of the comprehensive watershed management ecosystem (CWME) was −7099.81 hm², and the ecological footprint intensity was 4.28, indicating an ecological deficit, which is not conducive to sustainable development. However, an ecological turning point occurred in 2025: the cumulative ECC exceeded the cumulative EEF, at which point CWME achieved an ecological surplus. Therefore, although the preconstruction period generates considerable ecological pressure, overall, comprehensive watershed management supports sustainable development of the ecological environment. This study provides new trade-off ideas for ecological restoration projects such as comprehensive watershed management.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).