Huixuan Qian, Tianguan Wang, Bo Zhang, Guozhe Meng
{"title":"The acceleration of localized copper corrosion by extracellular polymeric substances of sulfate-reducing bacteria","authors":"Huixuan Qian, Tianguan Wang, Bo Zhang, Guozhe Meng","doi":"10.1016/j.bioelechem.2025.108980","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial-induced corrosion (MIC) of copper pipelines, especially in sulfate-reducing bacteria (SRB)-rich environments, poses a significant challenge. Despite its importance, the role of SRB-secreted extracellular polymeric substances (EPS) in copper corrosion particularly their time-dependent interactions remains unclear. This knowledge gap limits the development of effective corrosion mitigation strategies. In this study, we investigate the impact of EPS on copper corrosion using electrochemical and surface characterization techniques. Our findings reveal that EPS exhibits a dual role in copper corrosion. During the initial immersion phase (1–3 days), EPS adsorption forms a protective layer, temporarily inhibiting corrosion. In the middle stage (4–8 days), EPS accelerates corrosion by degrading the copper oxide film, as evidenced by a negative shift in the breakdown potential (<em>E</em><sub>b</sub>). In the final stage (9–14 days), uneven EPS coverage exacerbates localized corrosion. Thus, SRB-secreted EPS initially acts as a corrosion inhibitor but later promotes localized corrosion through oxide film disruption and non-uniform coverage. We systematically investigated the mechanisms of EPS-mediated corrosion inhibition across different immersion periods, identifying the critical transition threshold between the inhibition and promotion phases.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"165 ","pages":"Article 108980"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000830","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial-induced corrosion (MIC) of copper pipelines, especially in sulfate-reducing bacteria (SRB)-rich environments, poses a significant challenge. Despite its importance, the role of SRB-secreted extracellular polymeric substances (EPS) in copper corrosion particularly their time-dependent interactions remains unclear. This knowledge gap limits the development of effective corrosion mitigation strategies. In this study, we investigate the impact of EPS on copper corrosion using electrochemical and surface characterization techniques. Our findings reveal that EPS exhibits a dual role in copper corrosion. During the initial immersion phase (1–3 days), EPS adsorption forms a protective layer, temporarily inhibiting corrosion. In the middle stage (4–8 days), EPS accelerates corrosion by degrading the copper oxide film, as evidenced by a negative shift in the breakdown potential (Eb). In the final stage (9–14 days), uneven EPS coverage exacerbates localized corrosion. Thus, SRB-secreted EPS initially acts as a corrosion inhibitor but later promotes localized corrosion through oxide film disruption and non-uniform coverage. We systematically investigated the mechanisms of EPS-mediated corrosion inhibition across different immersion periods, identifying the critical transition threshold between the inhibition and promotion phases.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.