{"title":"Feedback control of coupled nonlinear oscillators with uncertain parameters","authors":"Bharat Singhal, Jr-Shin Li","doi":"10.1016/j.sysconle.2025.106084","DOIUrl":null,"url":null,"abstract":"<div><div>The effective control of synchronization patterns in an oscillator ensemble is essential for optimal functioning of natural and engineered systems, with applications across diverse domains, including power systems, robotics, and medical device development. In this work, we address the problem of designing a feedback law to establish a desired synchronization structure in a pair of oscillators with model uncertainties. These oscillators are modeled using phase models with uncertainties in their phase response curves and oscillation frequencies. Our principle idea is to design a switching input by utilizing the periodicity of system dynamics. The input parameters for this switching strategy are determined by solving a simple convex quadratic program with inequality constraints. In addition, we derive analytic expressions of feedback inputs for anti-phase and in-phase synchronization of a pair of sinusoidal and SNIPER phase oscillators. The effectiveness of the proposed approach is demonstrated on both phase models and complex biophysical models of spiking neurons.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"201 ","pages":"Article 106084"},"PeriodicalIF":2.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125000660","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The effective control of synchronization patterns in an oscillator ensemble is essential for optimal functioning of natural and engineered systems, with applications across diverse domains, including power systems, robotics, and medical device development. In this work, we address the problem of designing a feedback law to establish a desired synchronization structure in a pair of oscillators with model uncertainties. These oscillators are modeled using phase models with uncertainties in their phase response curves and oscillation frequencies. Our principle idea is to design a switching input by utilizing the periodicity of system dynamics. The input parameters for this switching strategy are determined by solving a simple convex quadratic program with inequality constraints. In addition, we derive analytic expressions of feedback inputs for anti-phase and in-phase synchronization of a pair of sinusoidal and SNIPER phase oscillators. The effectiveness of the proposed approach is demonstrated on both phase models and complex biophysical models of spiking neurons.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.