Shiguo Wang , Chang Lin , Rukhsana Ruby , Xiukai Ruan , Qingyong Deng
{"title":"Full-duplex (FD) two-way device-to-device (D2D) communications based on dual IRSs","authors":"Shiguo Wang , Chang Lin , Rukhsana Ruby , Xiukai Ruan , Qingyong Deng","doi":"10.1016/j.phycom.2025.102675","DOIUrl":null,"url":null,"abstract":"<div><div>For device-to-device (D2D) communications in the internet of things (IoT), when the direct links between terminals are unavailable owing to obstacles or severe fading, deploying intelligent reflecting surfaces (IRSs) is a promising solution to reconfigure channel environments for enhancing signal coverage and system capacity. In this paper, to improve system spectrum and energy efficiency, a novel full-duplex (FD) D2D communication model with dual IRSs is presented, where two IRSs are deployed closely to two FD transceivers for assisting the exchange of information between them. Given the budget of total transmit power, maximizing the achievable sum-rate of such IRS-assisted FD two-way system is formulated to optimize the precoding at the two transceivers and the phase shifts at the two IRSs. For such a coupled non-convex problem, we decouple it into two subproblems successfully, which can be solved in an alternate manner with low complexity. Simulation results are presented to validate the superior performance of the proposed D2D communication model compared to the existing models and similar optimization schemes.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"71 ","pages":"Article 102675"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725000783","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
For device-to-device (D2D) communications in the internet of things (IoT), when the direct links between terminals are unavailable owing to obstacles or severe fading, deploying intelligent reflecting surfaces (IRSs) is a promising solution to reconfigure channel environments for enhancing signal coverage and system capacity. In this paper, to improve system spectrum and energy efficiency, a novel full-duplex (FD) D2D communication model with dual IRSs is presented, where two IRSs are deployed closely to two FD transceivers for assisting the exchange of information between them. Given the budget of total transmit power, maximizing the achievable sum-rate of such IRS-assisted FD two-way system is formulated to optimize the precoding at the two transceivers and the phase shifts at the two IRSs. For such a coupled non-convex problem, we decouple it into two subproblems successfully, which can be solved in an alternate manner with low complexity. Simulation results are presented to validate the superior performance of the proposed D2D communication model compared to the existing models and similar optimization schemes.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.