Graph-based machine learning for high-resolution assessment of pedestrian-weighted exposure to air pollution

IF 12.4 Q1 ENVIRONMENTAL SCIENCES
Feifeng Jiang , Jun Ma
{"title":"Graph-based machine learning for high-resolution assessment of pedestrian-weighted exposure to air pollution","authors":"Feifeng Jiang ,&nbsp;Jun Ma","doi":"10.1016/j.resenv.2025.100219","DOIUrl":null,"url":null,"abstract":"<div><div>Pedestrians are particularly vulnerable to air pollution due to their proximity to pollutant sources and elevated respiratory rates during physical activity, amplifying cumulative health risks. However, existing studies focus on concentration- or residence-based exposure assessment, overlooking the dynamic interaction between pollution patterns and pedestrian activity. This study therefore introduces a novel methodological framework to assess pedestrian-specific exposure to PM2.5 in diverse urban environments. Applied to New York City, the framework leverages graph-based machine learning to predict street-level PM2.5 concentrations from vehicle-sensed pollution data, while estimating high-resolution pedestrian volume derived from street view imagery and ground-truth count data. The results reveal significant divergences between traditional exposure assessments and pedestrian-specific exposure patterns, uncovering previously overlooked high-risk zones. High-exposure hotspots are not limited to areas with elevated pollution levels but also include locations where moderate pollution coincides with high pedestrian activity. This study also explores the spatial relationship between exposure patterns and urban vegetation coverage, providing actionable insights for targeted interventions. By bridging the gap between pollution dynamics and pedestrian activity, this research provides urban planners and policymakers with new insights for developing pedestrian-centered air quality management strategies, contributing to healthier and more sustainable urban environments.</div></div>","PeriodicalId":34479,"journal":{"name":"Resources Environment and Sustainability","volume":"20 ","pages":"Article 100219"},"PeriodicalIF":12.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Environment and Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666916125000313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrians are particularly vulnerable to air pollution due to their proximity to pollutant sources and elevated respiratory rates during physical activity, amplifying cumulative health risks. However, existing studies focus on concentration- or residence-based exposure assessment, overlooking the dynamic interaction between pollution patterns and pedestrian activity. This study therefore introduces a novel methodological framework to assess pedestrian-specific exposure to PM2.5 in diverse urban environments. Applied to New York City, the framework leverages graph-based machine learning to predict street-level PM2.5 concentrations from vehicle-sensed pollution data, while estimating high-resolution pedestrian volume derived from street view imagery and ground-truth count data. The results reveal significant divergences between traditional exposure assessments and pedestrian-specific exposure patterns, uncovering previously overlooked high-risk zones. High-exposure hotspots are not limited to areas with elevated pollution levels but also include locations where moderate pollution coincides with high pedestrian activity. This study also explores the spatial relationship between exposure patterns and urban vegetation coverage, providing actionable insights for targeted interventions. By bridging the gap between pollution dynamics and pedestrian activity, this research provides urban planners and policymakers with new insights for developing pedestrian-centered air quality management strategies, contributing to healthier and more sustainable urban environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Resources Environment and Sustainability
Resources Environment and Sustainability Environmental Science-Environmental Science (miscellaneous)
CiteScore
15.10
自引率
0.00%
发文量
41
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信