High-Precision Biochemical Sensing with Resonant Monocrystalline Plasmonic Ag Microcubes in the Mid-Infrared Spectrum

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aidana Beisenova, Wihan Adi, Shinwon Kang, Kenzie B. Germanson, Simon Nam, Samir Rosas, Shovasis Kumar Biswas, Manish S. Patankar, Seog-Jin Jeon* and Filiz Yesilkoy*, 
{"title":"High-Precision Biochemical Sensing with Resonant Monocrystalline Plasmonic Ag Microcubes in the Mid-Infrared Spectrum","authors":"Aidana Beisenova,&nbsp;Wihan Adi,&nbsp;Shinwon Kang,&nbsp;Kenzie B. Germanson,&nbsp;Simon Nam,&nbsp;Samir Rosas,&nbsp;Shovasis Kumar Biswas,&nbsp;Manish S. Patankar,&nbsp;Seog-Jin Jeon* and Filiz Yesilkoy*,&nbsp;","doi":"10.1021/acsnano.5c0062410.1021/acsnano.5c00624","DOIUrl":null,"url":null,"abstract":"<p >Infrared (IR) spectroscopic fingerprinting is a powerful analytical tool for characterizing molecular compositions across biological, environmental, and industrial samples through their specific vibrational modes. Specifically, when the sample is characterized in resonant plasmonic cavities, as in the surface-enhanced mid-IR absorption spectroscopy (SEIRAS), highly sensitive and specific molecular detection can be achieved. However, current SEIRAS techniques rely on nanofabricated subwavelength antennas, limited by low-throughput lithographic processes, lacking scalability to address broad biochemical sensing applications. To address this, we present an on-resonance SEIRAS method utilizing silver (Ag) cubic microparticles (Ag-CMPs) with robust mid-IR plasmonic resonances. These monocrystalline Ag-CMPs, featuring sharp edges and vertices, are synthesized via a high-throughput, wet-chemical process. When dispersed on gold mirror substrates with an aluminum oxide spacer, Ag-CMPs support enhanced near-field light–matter interactions in nanocavities while enabling far-field imaging-based optical interrogation due to their strong extinction cross sections. We demonstrate the detection of polydimethylsiloxane (PDMS) and bovine serum albumin (BSA) monolayers by simply probing individual Ag-CMPs, enabled by the resonant amplification of the characteristic vibrational absorptions. Furthermore, our single-particle SEIRAS (SP-SEIRAS) approach effectively analyzes complex human peritoneal fluid (PF) samples, eliminating the challenges of standard bulk sample measurements. This scalable and efficient SP-SEIRAS method addresses key limitations of IR spectroscopic fingerprinting techniques, unlocking possibilities for their widespread adoption in real-world biochemical sensing applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 13","pages":"13273–13286 13273–13286"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c00624","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared (IR) spectroscopic fingerprinting is a powerful analytical tool for characterizing molecular compositions across biological, environmental, and industrial samples through their specific vibrational modes. Specifically, when the sample is characterized in resonant plasmonic cavities, as in the surface-enhanced mid-IR absorption spectroscopy (SEIRAS), highly sensitive and specific molecular detection can be achieved. However, current SEIRAS techniques rely on nanofabricated subwavelength antennas, limited by low-throughput lithographic processes, lacking scalability to address broad biochemical sensing applications. To address this, we present an on-resonance SEIRAS method utilizing silver (Ag) cubic microparticles (Ag-CMPs) with robust mid-IR plasmonic resonances. These monocrystalline Ag-CMPs, featuring sharp edges and vertices, are synthesized via a high-throughput, wet-chemical process. When dispersed on gold mirror substrates with an aluminum oxide spacer, Ag-CMPs support enhanced near-field light–matter interactions in nanocavities while enabling far-field imaging-based optical interrogation due to their strong extinction cross sections. We demonstrate the detection of polydimethylsiloxane (PDMS) and bovine serum albumin (BSA) monolayers by simply probing individual Ag-CMPs, enabled by the resonant amplification of the characteristic vibrational absorptions. Furthermore, our single-particle SEIRAS (SP-SEIRAS) approach effectively analyzes complex human peritoneal fluid (PF) samples, eliminating the challenges of standard bulk sample measurements. This scalable and efficient SP-SEIRAS method addresses key limitations of IR spectroscopic fingerprinting techniques, unlocking possibilities for their widespread adoption in real-world biochemical sensing applications.

Abstract Image

中红外光谱共振单晶等离子体银微立方体高精度生化传感
红外(IR)光谱指纹是一种强大的分析工具,通过其特定的振动模式来表征生物,环境和工业样品的分子组成。具体来说,当样品在共振等离子体腔中进行表征时,如在表面增强中红外吸收光谱(SEIRAS)中,可以实现高灵敏度和特异性的分子检测。然而,目前的SEIRAS技术依赖于纳米制造的亚波长天线,受到低通量光刻工艺的限制,缺乏可扩展性,无法解决广泛的生化传感应用。为了解决这个问题,我们提出了一种非共振SEIRAS方法,利用银(Ag)立方微粒(Ag- cmps)具有强大的中红外等离子体共振。这些单晶ag - cmp,具有锋利的边缘和顶点,是通过高通量,湿化学工艺合成的。当用氧化铝间隔剂分散在金镜面衬底上时,ag - cmp支持纳米腔中增强的近场光-物质相互作用,同时由于其强消光截面而实现基于远场成像的光学询问。我们展示了检测聚二甲基硅氧烷(PDMS)和牛血清白蛋白(BSA)单层,通过简单地探测单个ag - cmp,使共振放大的特征振动吸收。此外,我们的单粒子SEIRAS (SP-SEIRAS)方法有效地分析了复杂的人体腹膜液(PF)样品,消除了标准散装样品测量的挑战。这种可扩展且高效的SP-SEIRAS方法解决了红外光谱指纹识别技术的关键限制,为其在现实世界的生化传感应用中广泛采用解锁了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信