Optimizing Human Exposome Biomonitoring: A Machine Learning Approach to Predict Optimal Biofluid Matrices

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Bo Peng, Min Liu, Tong Zhu* and Mingliang Fang*, 
{"title":"Optimizing Human Exposome Biomonitoring: A Machine Learning Approach to Predict Optimal Biofluid Matrices","authors":"Bo Peng,&nbsp;Min Liu,&nbsp;Tong Zhu* and Mingliang Fang*,&nbsp;","doi":"10.1021/acs.estlett.5c0003910.1021/acs.estlett.5c00039","DOIUrl":null,"url":null,"abstract":"<p >Biomarker identification is crucial for exposomic studies, yet few have been established relative to the vast number of chemicals human encounter. While biomarkers can be detected in blood or urine, the optimal biological matrix for each chemical remains unclear. We curated data on biomarker identification in urine or blood for 526 chemicals from 4797 biomonitoring entities, sourced from 89 distinct cohorts across 43 countries, and developed a machine learning model named Biomarker Matrix Identifier (BMI) to predict the most suitable biological fluid for biomarker identification. Our model achieves over 94% accuracy using circular fingerprints as the input. Applying this method to the Human Exposomic Metabolome Database (HExPMetDB) containing over 20,000 chemicals revealed that approximately 67% of compounds are predicted to be more effectively monitored using urine as the optimal biomonitoring matrix. This predictive model enhances the accuracy of the exposure assessment in human exposomic analysis, facilitating more efficient biomarker identification strategies. In sum, we have established an effective prediction model in facilitating the prediction of whether the identified chemicals in the biological fluids can represent exposure for human exposomic analysis.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"12 4","pages":"383–389 383–389"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.5c00039","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biomarker identification is crucial for exposomic studies, yet few have been established relative to the vast number of chemicals human encounter. While biomarkers can be detected in blood or urine, the optimal biological matrix for each chemical remains unclear. We curated data on biomarker identification in urine or blood for 526 chemicals from 4797 biomonitoring entities, sourced from 89 distinct cohorts across 43 countries, and developed a machine learning model named Biomarker Matrix Identifier (BMI) to predict the most suitable biological fluid for biomarker identification. Our model achieves over 94% accuracy using circular fingerprints as the input. Applying this method to the Human Exposomic Metabolome Database (HExPMetDB) containing over 20,000 chemicals revealed that approximately 67% of compounds are predicted to be more effectively monitored using urine as the optimal biomonitoring matrix. This predictive model enhances the accuracy of the exposure assessment in human exposomic analysis, facilitating more efficient biomarker identification strategies. In sum, we have established an effective prediction model in facilitating the prediction of whether the identified chemicals in the biological fluids can represent exposure for human exposomic analysis.

Abstract Image

优化人体暴露生物监测:预测最佳生物流体矩阵的机器学习方法
生物标志物鉴定对暴露研究至关重要,但相对于人类接触的大量化学物质,生物标志物鉴定很少。虽然生物标志物可以在血液或尿液中检测到,但每种化学物质的最佳生物基质仍不清楚。我们整理了来自43个国家89个不同队列的4797个生物监测实体的尿液或血液中526种化学物质的生物标志物鉴定数据,并开发了一个名为生物标志物矩阵标识符(BMI)的机器学习模型,以预测最适合生物标志物鉴定的生物液体。我们的模型使用圆形指纹作为输入,准确率超过94%。将该方法应用于包含超过20,000种化学物质的人类暴露代谢组数据库(HExPMetDB)显示,使用尿液作为最佳生物监测基质,预计约67%的化合物可以更有效地监测。该预测模型提高了人类暴露分析中暴露评估的准确性,促进了更有效的生物标志物鉴定策略。总之,我们已经建立了一个有效的预测模型,有助于预测生物流体中鉴定的化学物质是否可以代表人体暴露分析的暴露。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信