Vertically Integrated Dual-Memtransistor Enabled Reconfigurable Heterosynaptic Sensorimotor Networks and In-Memory Neuromorphic Computing

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Srilagna Sahoo, Abin Varghese, Aniket Sadashiva, Mayank Goyal, Jayatika Sakhuja, Debanjan Bhowmik and Saurabh Lodha*, 
{"title":"Vertically Integrated Dual-Memtransistor Enabled Reconfigurable Heterosynaptic Sensorimotor Networks and In-Memory Neuromorphic Computing","authors":"Srilagna Sahoo,&nbsp;Abin Varghese,&nbsp;Aniket Sadashiva,&nbsp;Mayank Goyal,&nbsp;Jayatika Sakhuja,&nbsp;Debanjan Bhowmik and Saurabh Lodha*,&nbsp;","doi":"10.1021/acsnano.5c0068310.1021/acsnano.5c00683","DOIUrl":null,"url":null,"abstract":"<p >Neuromorphic in-memory computing requires an area-efficient architecture for seamless and low-latency parallel processing of large volumes of data. Here, we report a compact, vertically integrated/stratified field-effect transistor (VSFET) consisting of a 2D nonferroelectric MoS<sub>2</sub> FET channel stacked on a 2D ferroelectric In<sub>2</sub>Se<sub>3</sub> FET channel. Electrostatic coupling between the ferroelectric and nonferroelectric semiconducting channels results in hysteretic transfer and output characteristics of both FETs. The gate-controlled MoS<sub>2</sub> memtransistor is shown to emulate homosynaptic plasticity behavior with low nonlinearity, low epoch, and high accuracy supervised (ANN─artificial neural network) and unsupervised (SNN─spiking neural network) on-chip learning. Further, simultaneous measurements of the MoS<sub>2</sub> and In<sub>2</sub>Se<sub>3</sub> transistor synapses help to realize complex heterosynaptic cooperation and competition behaviors. These are shown to mimic advanced sensorimotor NN-controlled gill withdrawal reflex sensitization and habituation of a sea mollusk (Aplysia) with ultralow power consumption. Finally, we show logic reconfigurability of the VSFET to realize Boolean gates, thereby adding significant design flexibility for advanced computing technologies.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 13","pages":"13287–13299 13287–13299"},"PeriodicalIF":16.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c00683","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic in-memory computing requires an area-efficient architecture for seamless and low-latency parallel processing of large volumes of data. Here, we report a compact, vertically integrated/stratified field-effect transistor (VSFET) consisting of a 2D nonferroelectric MoS2 FET channel stacked on a 2D ferroelectric In2Se3 FET channel. Electrostatic coupling between the ferroelectric and nonferroelectric semiconducting channels results in hysteretic transfer and output characteristics of both FETs. The gate-controlled MoS2 memtransistor is shown to emulate homosynaptic plasticity behavior with low nonlinearity, low epoch, and high accuracy supervised (ANN─artificial neural network) and unsupervised (SNN─spiking neural network) on-chip learning. Further, simultaneous measurements of the MoS2 and In2Se3 transistor synapses help to realize complex heterosynaptic cooperation and competition behaviors. These are shown to mimic advanced sensorimotor NN-controlled gill withdrawal reflex sensitization and habituation of a sea mollusk (Aplysia) with ultralow power consumption. Finally, we show logic reconfigurability of the VSFET to realize Boolean gates, thereby adding significant design flexibility for advanced computing technologies.

Abstract Image

垂直集成双mem晶体管支持可重构异突触感觉运动网络和内存中的神经形态计算
神经形态内存计算需要一个区域高效的架构来无缝和低延迟地并行处理大量数据。在这里,我们报告了一种紧凑的垂直集成/分层场效应晶体管(VSFET),由2D非铁电MoS2 FET沟道堆叠在2D铁电In2Se3 FET沟道上组成。铁电和非铁电半导体通道之间的静电耦合导致了两种场效应管的滞后转移和输出特性。门控MoS2 mem晶体管具有低非线性、低历元和高精度的有监督(ANN─人工神经网络)和无监督(SNN─尖峰神经网络)片上学习,可以模拟同突触可塑性行为。此外,同时测量MoS2和In2Se3晶体管突触有助于实现复杂的异突触合作和竞争行为。这些被证明是模仿先进的感觉运动神经网络控制的鳃退缩反射的敏化和习惯的海洋软体动物(Aplysia)超低功耗。最后,我们展示了vset实现布尔门的逻辑可重构性,从而为先进的计算技术增加了显著的设计灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信