Marko Mladenović*, Manasa Kaniselvan, Christoph Weilenmann, Alexandros Emboras and Mathieu Luisier,
{"title":"Termination-Dependent Resistive Switching in SrTiO3 Valence Change Memory Cells","authors":"Marko Mladenović*, Manasa Kaniselvan, Christoph Weilenmann, Alexandros Emboras and Mathieu Luisier, ","doi":"10.1021/acsaelm.4c0235010.1021/acsaelm.4c02350","DOIUrl":null,"url":null,"abstract":"<p >Valence change memory (VCM) cells based on SrTiO<sub>3</sub> (STO), a perovskite oxide, are a promising type of emerging memory device. While the operational principle of most VCM cells relies on the growth and dissolution of one or multiple conductive filaments, those based on STO are known to exhibit a distinctive “interface-type” switching, which is associated with the modulation of the Schottky barrier at their active electrode. Still, a detailed picture of the processes that lead to interface-type switching is not available. In this work, we use a fully atomistic <i>ab initio</i> model to study the resistive switching of a Pt-STO-Ti stack. We identify that the termination of the crystalline STO plays a decisive role in the switching mechanism, depending on the relative band alignment between the material and the Pt electrode. In particular, we show that the accumulation of oxygen vacancies at the Pt side can be the origin of resistive switching in TiO<sub>2</sub>-terminated devices by lowering the conduction band minimum of the STO layer, thus facilitating transmission through the Schottky barrier. Moreover, we investigated the possibility of filamentary switching in STO and revealed that it is most likely to occur at the Pt electrode of the SrO-terminated cells.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 7","pages":"2839–2847 2839–2847"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c02350","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Valence change memory (VCM) cells based on SrTiO3 (STO), a perovskite oxide, are a promising type of emerging memory device. While the operational principle of most VCM cells relies on the growth and dissolution of one or multiple conductive filaments, those based on STO are known to exhibit a distinctive “interface-type” switching, which is associated with the modulation of the Schottky barrier at their active electrode. Still, a detailed picture of the processes that lead to interface-type switching is not available. In this work, we use a fully atomistic ab initio model to study the resistive switching of a Pt-STO-Ti stack. We identify that the termination of the crystalline STO plays a decisive role in the switching mechanism, depending on the relative band alignment between the material and the Pt electrode. In particular, we show that the accumulation of oxygen vacancies at the Pt side can be the origin of resistive switching in TiO2-terminated devices by lowering the conduction band minimum of the STO layer, thus facilitating transmission through the Schottky barrier. Moreover, we investigated the possibility of filamentary switching in STO and revealed that it is most likely to occur at the Pt electrode of the SrO-terminated cells.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico