Siu Ting Tai, Chen Wang, Ruihuan Cheng and Yue Chen*,
{"title":"Revisiting Many-Body Interaction Heat Current and Thermal Conductivity Calculations Using the Moment Tensor Potential/LAMMPS Interface","authors":"Siu Ting Tai, Chen Wang, Ruihuan Cheng and Yue Chen*, ","doi":"10.1021/acs.jctc.4c0165910.1021/acs.jctc.4c01659","DOIUrl":null,"url":null,"abstract":"<p >The definition of heat current operator for systems for nonpairwise additive interactions and its impact on related lattice thermal conductivity (κ<sub><i>L</i></sub>) via molecular dynamics (MD) simulation are ambiguous and controversial when migrating from empirical potential models to machine learning potential (MLP) models. Herein, we study and compare the significance of many-body interaction with heat current computation in one of the most popular MLP models, the moment tensor potential (MTP). Nonequilibrium MD simulations and equilibrium MD simulations among four different materials were performed, and inconsistencies in energy conservation between the simulation thermostat and the pairwise calculator were found. A new virial stress tensor expression with a many-body heat current description was integrated inside the MTP, and we uncovered the influence of the modification that could alter the κ<sub><i>L</i></sub> results by 29–64% using the equilibrium MD computational approach. Our work demonstrates the importance of a many-body description during thermal analysis in MD simulations when MLPs are of concern.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 7","pages":"3649–3657 3649–3657"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jctc.4c01659","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c01659","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The definition of heat current operator for systems for nonpairwise additive interactions and its impact on related lattice thermal conductivity (κL) via molecular dynamics (MD) simulation are ambiguous and controversial when migrating from empirical potential models to machine learning potential (MLP) models. Herein, we study and compare the significance of many-body interaction with heat current computation in one of the most popular MLP models, the moment tensor potential (MTP). Nonequilibrium MD simulations and equilibrium MD simulations among four different materials were performed, and inconsistencies in energy conservation between the simulation thermostat and the pairwise calculator were found. A new virial stress tensor expression with a many-body heat current description was integrated inside the MTP, and we uncovered the influence of the modification that could alter the κL results by 29–64% using the equilibrium MD computational approach. Our work demonstrates the importance of a many-body description during thermal analysis in MD simulations when MLPs are of concern.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.