Enlarged Cleavable Linkages in Shuriken-like Quaternary Ammonium Compounds Providing Safer Bactericides

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiao-Qi Xu, Yanji Chu, Zhipeng Liu, Bin Yuan and Yapei Wang*, 
{"title":"Enlarged Cleavable Linkages in Shuriken-like Quaternary Ammonium Compounds Providing Safer Bactericides","authors":"Xiao-Qi Xu,&nbsp;Yanji Chu,&nbsp;Zhipeng Liu,&nbsp;Bin Yuan and Yapei Wang*,&nbsp;","doi":"10.1021/acs.chemmater.5c0020210.1021/acs.chemmater.5c00202","DOIUrl":null,"url":null,"abstract":"<p >Although they offer great convenience in preventing microbial infections, the nondegradable feature of most commercial quaternary ammonium compounds (QACs) has led to persistent environmental accumulation, raising significant concerns about their detrimental impacts on public and ecological health. In this study, we report a kind of shuriken-like QACs with rapid hydrolysis properties under mild conditions, enabled by the introduction of enlarged cleavable linkages as backbones. Such shuriken-like QACs present potent bactericidal activity owing to the multicationic “heads” yet can be converted to entirely harmless forms of choline and silicone oil after degradation. Both the cytotoxicity assessment and the biosafety evaluation confirm the nontoxic nature of the degradation products. The bactericidal performance in fruit preservation and infection prevention on fabric surfaces further illustrates the broad application prospects of such degradable QACs within the realm of food safety and public health. With the advantages of rapid hydrolysis, environmental friendliness, and low biotoxicity, the concept of an “enlarged cleavable linkage” strategy will pave the way for exploiting a generation of degradable disinfectants that can effectively combat microbial threats while ensuring a minimal ecological footprint.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 7","pages":"2619–2628 2619–2628"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00202","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Although they offer great convenience in preventing microbial infections, the nondegradable feature of most commercial quaternary ammonium compounds (QACs) has led to persistent environmental accumulation, raising significant concerns about their detrimental impacts on public and ecological health. In this study, we report a kind of shuriken-like QACs with rapid hydrolysis properties under mild conditions, enabled by the introduction of enlarged cleavable linkages as backbones. Such shuriken-like QACs present potent bactericidal activity owing to the multicationic “heads” yet can be converted to entirely harmless forms of choline and silicone oil after degradation. Both the cytotoxicity assessment and the biosafety evaluation confirm the nontoxic nature of the degradation products. The bactericidal performance in fruit preservation and infection prevention on fabric surfaces further illustrates the broad application prospects of such degradable QACs within the realm of food safety and public health. With the advantages of rapid hydrolysis, environmental friendliness, and low biotoxicity, the concept of an “enlarged cleavable linkage” strategy will pave the way for exploiting a generation of degradable disinfectants that can effectively combat microbial threats while ensuring a minimal ecological footprint.

Abstract Image

shuriken类季铵化合物中可切割键的扩大提供了更安全的杀菌剂
尽管它们在预防微生物感染方面提供了极大的便利,但大多数商业季铵化合物(QACs)的不可降解特性导致了持续的环境积累,引起了人们对其对公众和生态健康的有害影响的重大关注。在这项研究中,我们报道了一种在温和条件下具有快速水解特性的shuriken-like QACs,通过引入扩大的可切割键作为骨架而实现。由于具有多阳离子的“头”,这种类似于shurikenqacs具有强大的杀菌活性,但在降解后可以转化为完全无害的胆碱和硅油形式。细胞毒性评价和生物安全性评价均证实了降解产物的无毒性。在水果保鲜和织物表面防感染方面的杀菌性能进一步说明了这种可降解QACs在食品安全和公共卫生领域的广阔应用前景。由于具有快速水解、环境友好和低生物毒性的优点,“扩大可切割链接”策略的概念将为开发一代可降解消毒剂铺平道路,这些消毒剂可以有效地对抗微生物威胁,同时确保最小的生态足迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信