{"title":"Polarizable Water Model with Ab Initio Neural Network Dynamic Charges and Spontaneous Charge Transfer","authors":"Qiujiang Liang*, and , Jun Yang*, ","doi":"10.1021/acs.jctc.4c0144810.1021/acs.jctc.4c01448","DOIUrl":null,"url":null,"abstract":"<p >Simulating water accurately has been a challenge due to the complexity of describing polarization and intermolecular charge transfer. Quantum mechanical (QM) electronic structures provide an accurate description of polarization in response to local environments, which is nevertheless too expensive for large water systems. In this study, we have developed a polarizable water model integrating Charge Model 5 atomic charges at the level of the second-order Mo̷ller–Plesset perturbation theory, predicted by an accurate and transferable charge neural network (ChargeNN) model. The spontaneous intermolecular charge transfer has been explicitly accounted for, enabling a precise treatment of hydrogen bonds and out-of-plane polarization. Our ChargeNN water model successfully reproduces various properties of water in gas, liquid, and solid phases. For example, ChargeNN correctly captures the hydrogen-bond stretching peak and bending-libration combination band, which are absent in the spectra using fixed charges, highlighting the significance of accurate polarization and charge transfer. Finally, the molecular dynamical simulations using ChargeNN for liquid water and a large water droplet with a ∼4.5 nm radius reveal that the strong interfacial electric fields are concurrently induced by the partial collapse of the hydrogen-bond network and surface-to-interior charge transfer. Our study paves the way for QM-polarizable force fields, aiming for large-scale molecular simulations with high accuracy.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 7","pages":"3360–3373 3360–3373"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jctc.4c01448","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c01448","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Simulating water accurately has been a challenge due to the complexity of describing polarization and intermolecular charge transfer. Quantum mechanical (QM) electronic structures provide an accurate description of polarization in response to local environments, which is nevertheless too expensive for large water systems. In this study, we have developed a polarizable water model integrating Charge Model 5 atomic charges at the level of the second-order Mo̷ller–Plesset perturbation theory, predicted by an accurate and transferable charge neural network (ChargeNN) model. The spontaneous intermolecular charge transfer has been explicitly accounted for, enabling a precise treatment of hydrogen bonds and out-of-plane polarization. Our ChargeNN water model successfully reproduces various properties of water in gas, liquid, and solid phases. For example, ChargeNN correctly captures the hydrogen-bond stretching peak and bending-libration combination band, which are absent in the spectra using fixed charges, highlighting the significance of accurate polarization and charge transfer. Finally, the molecular dynamical simulations using ChargeNN for liquid water and a large water droplet with a ∼4.5 nm radius reveal that the strong interfacial electric fields are concurrently induced by the partial collapse of the hydrogen-bond network and surface-to-interior charge transfer. Our study paves the way for QM-polarizable force fields, aiming for large-scale molecular simulations with high accuracy.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.