Adaptive survival strategies of rumen microbiota with solid diet deficiency in early life cause epithelial mitochondrial dysfunction

Shiqiang Yu, Yuting Fu, Jinrui Qu, Kai Zhang, Weiyun Zhu, Shengyong Mao, Junhua Liu
{"title":"Adaptive survival strategies of rumen microbiota with solid diet deficiency in early life cause epithelial mitochondrial dysfunction","authors":"Shiqiang Yu, Yuting Fu, Jinrui Qu, Kai Zhang, Weiyun Zhu, Shengyong Mao, Junhua Liu","doi":"10.1093/ismejo/wraf064","DOIUrl":null,"url":null,"abstract":"With extreme nutritional substrate deficiency, the adaptive responses of the gastrointestinal microbiota and host metabolism are largely unknown. Here, we successfully established a microbial substrate deficiency model in the rumen without solid diet introduction in neonatal lambs. In the absence of solid diet, we observed a reduction in the Simpson Index of rumen bacteria, along with a marked decline in the abundance of keystone microorganisms such as Prevotella, Selenomonas, Megasphaera, and Succiniclasticum, indicating a simplified microbial interaction network. Additionally, more urea and NH3-N production facilitated microbial efficient nitrogen utilization to prioritize ammonia as a nitrogen source for survival, reallocating energy to overcome nutritional limitations and sustain their viability. In addition, enriched microorganisms (Methanosarcina, Methanomicrobium, Methanobrevibacter, and Methanobacterium) promoted hydrogen removal and the growth of nitrogen-producing microorganisms (Pecoramyces, Piromyces, Caecomyces, and Orpinomyces). It also reinforced the glutamate-glutamine pathway, as evidenced by the higher expression of glnA, GLUL, gdhA, ureAB, suggesting enhanced internal cycling of nitrogen for microbial survival. This selfish microbial survival strategy deprived the host of adequate volatile fatty acids for energy metabolism, resulting in the downregulation of rumen epithelial cell cycle proteins (CCNB1, CCNE), abnormal mitochondrial morphology, and reduced mitochondrial DNA copy number and ATP production. Overall, these findings revealed the adaptive survival strategies of rumen microbiota with solid diet deficiency in early life, which caused alterations in epithelial cell mitochondrial function.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"377 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With extreme nutritional substrate deficiency, the adaptive responses of the gastrointestinal microbiota and host metabolism are largely unknown. Here, we successfully established a microbial substrate deficiency model in the rumen without solid diet introduction in neonatal lambs. In the absence of solid diet, we observed a reduction in the Simpson Index of rumen bacteria, along with a marked decline in the abundance of keystone microorganisms such as Prevotella, Selenomonas, Megasphaera, and Succiniclasticum, indicating a simplified microbial interaction network. Additionally, more urea and NH3-N production facilitated microbial efficient nitrogen utilization to prioritize ammonia as a nitrogen source for survival, reallocating energy to overcome nutritional limitations and sustain their viability. In addition, enriched microorganisms (Methanosarcina, Methanomicrobium, Methanobrevibacter, and Methanobacterium) promoted hydrogen removal and the growth of nitrogen-producing microorganisms (Pecoramyces, Piromyces, Caecomyces, and Orpinomyces). It also reinforced the glutamate-glutamine pathway, as evidenced by the higher expression of glnA, GLUL, gdhA, ureAB, suggesting enhanced internal cycling of nitrogen for microbial survival. This selfish microbial survival strategy deprived the host of adequate volatile fatty acids for energy metabolism, resulting in the downregulation of rumen epithelial cell cycle proteins (CCNB1, CCNE), abnormal mitochondrial morphology, and reduced mitochondrial DNA copy number and ATP production. Overall, these findings revealed the adaptive survival strategies of rumen microbiota with solid diet deficiency in early life, which caused alterations in epithelial cell mitochondrial function.
早期固体饮食缺乏的瘤胃微生物群的适应性生存策略导致上皮线粒体功能障碍
由于营养底物极度缺乏,胃肠道微生物群和宿主代谢的适应性反应在很大程度上是未知的。在此,我们成功地建立了不引入固体饲料的新生羔羊瘤胃微生物底物缺乏模型。在没有固体饲料的情况下,我们观察到瘤胃细菌的辛普森指数下降,同时关键微生物如普雷沃氏菌、硒单胞菌、巨噬菌和琥珀酸菌的丰度显著下降,表明微生物相互作用网络简化。此外,更多的尿素和NH3-N的产生促进了微生物高效的氮利用,优先考虑氨作为生存的氮源,重新分配能量以克服营养限制并维持其生存能力。此外,富集的微生物(Methanosarcina、methanomicroium、Methanobrevibacter和Methanobacterium)促进了氢气的去除和产氮微生物(Pecoramyces、Piromyces、Caecomyces和Orpinomyces)的生长。glnA、GLUL、gdhA、ureAB的高表达也增强了谷氨酸-谷氨酰胺通路,提示微生物生存所需的氮的内部循环增强。这种自私的微生物生存策略剥夺了宿主足够的用于能量代谢的挥发性脂肪酸,导致瘤胃上皮细胞周期蛋白(CCNB1, CCNE)下调,线粒体形态异常,线粒体DNA拷贝数和ATP产生减少。总的来说,这些发现揭示了早期固体饮食缺乏的瘤胃微生物群的适应性生存策略,这导致上皮细胞线粒体功能的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信