Size-dependent analysis of thermoelastic damping in small-scaled circular plates using the Moore–Gibson–Thompson thermoelasticity theory: frequency and energy approaches

IF 1.9 4区 工程技术 Q3 MECHANICS
Paul Rodrigues, Ankur Kulshreshta, M. K. Ranganathaswamy, Vikasdeep Singh Mann, Ruby Pant, Rajaa Jasim Mohammed, Ambati Vijay Kumar, Mansurov Zuxriddin Xalilillayevich, Nouby M. Ghazaly, Carlos Rodriguez-Benites
{"title":"Size-dependent analysis of thermoelastic damping in small-scaled circular plates using the Moore–Gibson–Thompson thermoelasticity theory: frequency and energy approaches","authors":"Paul Rodrigues,&nbsp;Ankur Kulshreshta,&nbsp;M. K. Ranganathaswamy,&nbsp;Vikasdeep Singh Mann,&nbsp;Ruby Pant,&nbsp;Rajaa Jasim Mohammed,&nbsp;Ambati Vijay Kumar,&nbsp;Mansurov Zuxriddin Xalilillayevich,&nbsp;Nouby M. Ghazaly,&nbsp;Carlos Rodriguez-Benites","doi":"10.1007/s00161-025-01378-9","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding and accurately quantifying thermoelastic damping (TED) in micro/nanoresonators is a major step in designing them to work well. Empirical and theoretical evidence suggests that classical elasticity theory (CET) and the Fourier heat equation break down when applied to structures with minuscule dimensions. This research presents an innovative framework to approximate TED value in miniature circular plates by leveraging both the frequency and energy-based approaches commonly applied in TED studies. The model incorporates the modified couple stress theory (MCST) and Moore–Gibson–Thompson (MGT) heat equation to enhance accuracy beyond the constraints of classical formulation at ultra-small scales. Non-classical constitutive relations and heat equation are firstly derived. Next, the MGT heat conduction equation is solved to determine the temperature distribution within the plate. In conclusion, TED is analytically formulated using two distinct approaches of frequency and energy. The agreement between these two approaches in yielding identical TED expressions reinforces the accuracy of the computations and the credibility of the developed model. The discussion in the numerical results section highlights the influence of essential parameters, especially the characteristic constants of the MCST and MGT model, on TED. The results indicate that while MCST reduces TED and the MGT model increases it, the classical framework, grounded in CET and the Fourier model, predicts a higher TED than the non-classical framework proposed in this study. This suggests that the reduction caused by MCST outweighs the increase due to the MGT model.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-025-01378-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and accurately quantifying thermoelastic damping (TED) in micro/nanoresonators is a major step in designing them to work well. Empirical and theoretical evidence suggests that classical elasticity theory (CET) and the Fourier heat equation break down when applied to structures with minuscule dimensions. This research presents an innovative framework to approximate TED value in miniature circular plates by leveraging both the frequency and energy-based approaches commonly applied in TED studies. The model incorporates the modified couple stress theory (MCST) and Moore–Gibson–Thompson (MGT) heat equation to enhance accuracy beyond the constraints of classical formulation at ultra-small scales. Non-classical constitutive relations and heat equation are firstly derived. Next, the MGT heat conduction equation is solved to determine the temperature distribution within the plate. In conclusion, TED is analytically formulated using two distinct approaches of frequency and energy. The agreement between these two approaches in yielding identical TED expressions reinforces the accuracy of the computations and the credibility of the developed model. The discussion in the numerical results section highlights the influence of essential parameters, especially the characteristic constants of the MCST and MGT model, on TED. The results indicate that while MCST reduces TED and the MGT model increases it, the classical framework, grounded in CET and the Fourier model, predicts a higher TED than the non-classical framework proposed in this study. This suggests that the reduction caused by MCST outweighs the increase due to the MGT model.

基于Moore-Gibson-Thompson热弹性理论的小型圆板热弹性阻尼的尺寸依赖性分析:频率和能量方法
理解和准确量化微纳谐振器中的热弹性阻尼(TED)是设计其良好工作的重要一步。经验和理论证据表明,经典弹性理论(CET)和傅立叶热方程在应用于小尺寸结构时失效。本研究提出了一个创新的框架,利用在TED研究中常用的频率和能量为基础的方法来近似微型圆形板的TED值。该模型结合了修正的耦合应力理论(MCST)和摩尔-吉布森-汤普森(MGT)热方程,在超小尺度下提高了经典公式的精度。首先推导了非经典本构关系和热方程。然后,求解MGT热传导方程,确定板内温度分布。总而言之,TED是用频率和能量两种不同的方法来解析表述的。这两种方法在产生相同TED表达式方面的一致性加强了计算的准确性和所开发模型的可信度。数值结果部分的讨论强调了基本参数,特别是MCST和MGT模型的特征常数对TED的影响。结果表明,虽然MCST降低了TED,而MGT模型增加了TED,但基于CET和傅里叶模型的经典框架预测的TED高于本研究提出的非经典框架。这表明MCST带来的减少超过了MGT模型带来的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信