Highly Selective Photocatalytic CO2 Reduction to C2H6 via Nanocluster-Single Atom-Vacancy on Ceria: Synergistic Mechanism and Orbital Effects

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yingnan Duan, Hexiang Zhao, Jixiang Ji, Zhurui Shen, Yi Wang, Yaping Du
{"title":"Highly Selective Photocatalytic CO2 Reduction to C2H6 via Nanocluster-Single Atom-Vacancy on Ceria: Synergistic Mechanism and Orbital Effects","authors":"Yingnan Duan, Hexiang Zhao, Jixiang Ji, Zhurui Shen, Yi Wang, Yaping Du","doi":"10.1021/acs.nanolett.5c00791","DOIUrl":null,"url":null,"abstract":"The photocatalytic reduction of CO<sub>2</sub> to high-value C<sub>2</sub> products involves sluggish multiple proton–electron couplings, resulting in low efficiency and selectivity. This study demonstrates that palladium (Pd) single-atom (Pd<sub>SA</sub>)- and Pd nanocluster (Pd<sub>NCs</sub>)-loaded CeO<sub>2</sub> with abundant oxygen vacancies (O<sub>v</sub>) synergistically enhance photocatalytic CO<sub>2</sub>-to-ethane (C<sub>2</sub>H<sub>6</sub>) conversion effectively and selectively. The Pd<sub>SA+NCs</sub>/CeO<sub>2</sub> photocatalyst achieves 80.4% electron selectivity for C<sub>2</sub>H<sub>6</sub> production with an electron consumption rate of 206.3 μmol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> in pure water, representing a 172.4-fold enhancement over pristine CeO<sub>2</sub>. Pd<sub>NCs</sub> interact with neighboring Pd<sub>SA</sub> and O<sub>v</sub> to form a Fermi level with the continuous characteristics of discrete energy levels, improving the charge distribution in local spatial electric fields. This enhancement favors electron migration from the π to σ orbital of COCO*, promoting C–C coupling. Our findings provide new insights to rationally design synergistic interactions between SA, NCs, and O<sub>v</sub> to achieve high selectivity toward C<sub>2</sub> products.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"59 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00791","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The photocatalytic reduction of CO2 to high-value C2 products involves sluggish multiple proton–electron couplings, resulting in low efficiency and selectivity. This study demonstrates that palladium (Pd) single-atom (PdSA)- and Pd nanocluster (PdNCs)-loaded CeO2 with abundant oxygen vacancies (Ov) synergistically enhance photocatalytic CO2-to-ethane (C2H6) conversion effectively and selectively. The PdSA+NCs/CeO2 photocatalyst achieves 80.4% electron selectivity for C2H6 production with an electron consumption rate of 206.3 μmol gcat–1 h–1 in pure water, representing a 172.4-fold enhancement over pristine CeO2. PdNCs interact with neighboring PdSA and Ov to form a Fermi level with the continuous characteristics of discrete energy levels, improving the charge distribution in local spatial electric fields. This enhancement favors electron migration from the π to σ orbital of COCO*, promoting C–C coupling. Our findings provide new insights to rationally design synergistic interactions between SA, NCs, and Ov to achieve high selectivity toward C2 products.

Abstract Image

纳米簇-单原子-铈空位高选择性光催化CO2还原为C2H6:协同机制和轨道效应
光催化还原CO2制取高价值C2产物过程中,多个质子-电子耦合缓慢,导致效率和选择性较低。本研究表明,具有丰富氧空位(Ov)的钯(Pd)单原子(PdSA)和钯纳米团簇(pdnc)负载CeO2可有效和选择性地协同促进光催化co2 -to-乙烷(C2H6)的转化。PdSA+NCs/CeO2光催化剂在纯水条件下产生C2H6的电子选择性为80.4%,电子消耗率为206.3 μmol gcat-1 h-1,比原始CeO2提高了172.4倍。pdnc与邻近的PdSA和Ov相互作用形成具有离散能级连续特性的费米能级,改善了局部空间电场中的电荷分布。这种增强有利于电子从π轨道向σ轨道迁移,促进C-C耦合。我们的研究结果为合理设计SA、nc和Ov之间的协同作用以实现对C2产品的高选择性提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信