Interfacial Mesochannels as Cation Pump for Enhanced Osmotic Energy Harvesting

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi Yang, Zirui Lv, Wanhai Zhou, Yiyue Zhao, Chaochao Yang, Yan Ai, Lipeng Wang, Zhihao Sun, Zaiwang Zhao, Peihua Yang, Wei Li, Dongliang Chao, Dongyuan Zhao
{"title":"Interfacial Mesochannels as Cation Pump for Enhanced Osmotic Energy Harvesting","authors":"Yi Yang,&nbsp;Zirui Lv,&nbsp;Wanhai Zhou,&nbsp;Yiyue Zhao,&nbsp;Chaochao Yang,&nbsp;Yan Ai,&nbsp;Lipeng Wang,&nbsp;Zhihao Sun,&nbsp;Zaiwang Zhao,&nbsp;Peihua Yang,&nbsp;Wei Li,&nbsp;Dongliang Chao,&nbsp;Dongyuan Zhao","doi":"10.1002/anie.202503110","DOIUrl":null,"url":null,"abstract":"<p>Membranes integrating 1D materials are rapidly emerging as highly promising platforms for osmotic energy harvesting. However, their power output is often constrained by insufficient ion selectivity. Herein, we demonstrate a cation pumping strategy by designing mesoporous silica coated multiwalled carbon nanotubes/aramid nanofiber (MCNTs@mSiO<sub>2</sub>/ANF) composite membranes as osmotic power generators. Cations can be initially enriched in the negatively charged and small-pore-sized (∼ 3 nm) interfacial mesopore channels, establishing a strong cation concentration gradient toward the interfiber nanochannels. The gradient continuously drives cations into the interfiber pores, facilitating charge separation, and improving ion selectivity. Additionally, the hydrophilic nature of the mesoporous silica shells promotes ion transport and contributes to high ion flux. Consequently, the fabricated MCNTs@mSiO<sub>2</sub>/ANF composite nanochannel membranes can deliver a notable power density of 8.24 W m<sup>−2</sup> with an excellent ion selectivity of 0.91 under a 50-fold NaCl salinity gradient. Importantly, the membranes demonstrate long-term stability for osmotic energy capturing. When placed between natural seawater and river water, the composite membranes yield an impressive power density of 9.93 W m<sup>−2</sup>, surpassing that of the state-of-the-art 1D material-based membranes. This work paves the way for the practical applications of nanofiber-based membranes in sustainable osmotic energy conversion.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 23","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202503110","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Membranes integrating 1D materials are rapidly emerging as highly promising platforms for osmotic energy harvesting. However, their power output is often constrained by insufficient ion selectivity. Herein, we demonstrate a cation pumping strategy by designing mesoporous silica coated multiwalled carbon nanotubes/aramid nanofiber (MCNTs@mSiO2/ANF) composite membranes as osmotic power generators. Cations can be initially enriched in the negatively charged and small-pore-sized (∼ 3 nm) interfacial mesopore channels, establishing a strong cation concentration gradient toward the interfiber nanochannels. The gradient continuously drives cations into the interfiber pores, facilitating charge separation, and improving ion selectivity. Additionally, the hydrophilic nature of the mesoporous silica shells promotes ion transport and contributes to high ion flux. Consequently, the fabricated MCNTs@mSiO2/ANF composite nanochannel membranes can deliver a notable power density of 8.24 W m−2 with an excellent ion selectivity of 0.91 under a 50-fold NaCl salinity gradient. Importantly, the membranes demonstrate long-term stability for osmotic energy capturing. When placed between natural seawater and river water, the composite membranes yield an impressive power density of 9.93 W m−2, surpassing that of the state-of-the-art 1D material-based membranes. This work paves the way for the practical applications of nanofiber-based membranes in sustainable osmotic energy conversion.

Abstract Image

界面介孔作为阳离子泵增强渗透能量收集
集成一维(1D)材料的膜正迅速成为极具前景的渗透能量收集平台。然而,它们的功率输出常常受到离子选择性不足的限制。在此,我们通过设计介孔二氧化硅涂层多壁碳纳米管/芳纶纳米纤维(MCNTs@mSiO2/ANF)复合膜作为渗透发电机,展示了阳离子泵送策略。阳离子可在带负电荷和孔径较小(~ 3nm)的界面介孔通道中富集,形成向纤维间纳米通道方向的强阳离子浓度梯度。梯度不断驱使阳离子进入纤维间孔,促进电荷分离,提高离子选择性。此外,介孔二氧化硅壳的亲水性促进了离子传输,并有助于高离子通量。因此,制备的MCNTs@mSiO2/ANF复合纳米通道膜在50倍NaCl盐度梯度下具有8.24 W/m2的功率密度和0.91的离子选择性。重要的是,这种膜在渗透能量捕获方面表现出长期的稳定性。当放置在天然海水和河水之间时,复合膜产生了令人印象深刻的9.93 W/m2的功率密度,超过了最先进的一维材料膜。这项工作为纳米纤维基膜在可持续渗透能量转换中的实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信