Yu Ou, Da Zhu, Pan Zhou, Changjian Li, Yang Lu, Qingbin Cao, Xuan Song, Wenhui Hou, Shuaishuai Yan, Yingchun Xia, Hangyu Zhou, Weili Zhang, Qingqing Feng, Hong Xu, Kai Liu
{"title":"Self‐Compartmented Electrolyte Design for Stable Cycling of Lithium Metal Batteries Under Extreme Conditions","authors":"Yu Ou, Da Zhu, Pan Zhou, Changjian Li, Yang Lu, Qingbin Cao, Xuan Song, Wenhui Hou, Shuaishuai Yan, Yingchun Xia, Hangyu Zhou, Weili Zhang, Qingqing Feng, Hong Xu, Kai Liu","doi":"10.1002/anie.202504632","DOIUrl":null,"url":null,"abstract":"Electrolyte is the key component dictating lithium battery performance, especially under extreme conditions such as fast cycling and low temperatures. However, conventional electrolyte design principles, which generally rely on a homogeneous mixture of solvents, salts, and functional additives, fail to simultaneously meet the requirements for both anodic/cathodic interfacial stability and bulk ion‐transport kinetics in lithium metal batteries. Herein, we present a self‐compartmented electrolyte design methodology. Lithium 4,5‐dicyano‐2‐(trifluoromethyl)imidazol‐1‐ide (LiTDI), featuring the ability to selectively self‐assemble on the cathode/electrolyte interface, compartmented the electrolyte into a heterogonous one. Close to the cathode side, LiTDI could induce an interfacial high‐concentration region, where the anion‐rich solvation structure facilitates the formation of a stable cathode‐electrolyte interphase (CEI). In the bulk, the electrolyte maintains a low concentration with low viscosity, ensuring fast ion transport and superior rate performance. Li||NCM811 cells achieve over 500 stable cycles with 80.3% capacity retention and deliver 169.3 mAh g‐1 at a 10C discharge rate. Under low‐temperature conditions (‐20 ℃), the cells maintained outstanding stability over 700 cycles at 0.5C charge/discharge, achieving capacity retention of 96.6% and an average Coulombic efficiency of 99.2%. This work provides a new electrolyte design paradigm, addressing the critical challenges of LMBs for high‐voltage and low‐temperature applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"38 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504632","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrolyte is the key component dictating lithium battery performance, especially under extreme conditions such as fast cycling and low temperatures. However, conventional electrolyte design principles, which generally rely on a homogeneous mixture of solvents, salts, and functional additives, fail to simultaneously meet the requirements for both anodic/cathodic interfacial stability and bulk ion‐transport kinetics in lithium metal batteries. Herein, we present a self‐compartmented electrolyte design methodology. Lithium 4,5‐dicyano‐2‐(trifluoromethyl)imidazol‐1‐ide (LiTDI), featuring the ability to selectively self‐assemble on the cathode/electrolyte interface, compartmented the electrolyte into a heterogonous one. Close to the cathode side, LiTDI could induce an interfacial high‐concentration region, where the anion‐rich solvation structure facilitates the formation of a stable cathode‐electrolyte interphase (CEI). In the bulk, the electrolyte maintains a low concentration with low viscosity, ensuring fast ion transport and superior rate performance. Li||NCM811 cells achieve over 500 stable cycles with 80.3% capacity retention and deliver 169.3 mAh g‐1 at a 10C discharge rate. Under low‐temperature conditions (‐20 ℃), the cells maintained outstanding stability over 700 cycles at 0.5C charge/discharge, achieving capacity retention of 96.6% and an average Coulombic efficiency of 99.2%. This work provides a new electrolyte design paradigm, addressing the critical challenges of LMBs for high‐voltage and low‐temperature applications.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.