Lactic-Acid-based Deep Eutectic Solvent for Sustainable Recovery of Critical Metals from Spent Lithium-ion Batteries under Mild Conditions

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Can Cao, Ziwen Yuan, Hong Liu, Xunchang Fei, Qianhong She
{"title":"Lactic-Acid-based Deep Eutectic Solvent for Sustainable Recovery of Critical Metals from Spent Lithium-ion Batteries under Mild Conditions","authors":"Can Cao, Ziwen Yuan, Hong Liu, Xunchang Fei, Qianhong She","doi":"10.1016/j.jclepro.2025.145460","DOIUrl":null,"url":null,"abstract":"Recycling critical metals from spent lithium-ion batteries (LIBs) is vital as their widespread application accelerates the depletion of mineral resources. This study presents a sustainable and energy-efficient process for recovering metals from spent LIBs using a deep eutectic solvent (DES) composed of choline chloride (ChCl) and lactic acid (LA) at low temperature, enabling effective utilization of low-grade heat. ChCl:LA DES exhibits strong reducibility and high proton concentration, contributing to efficient lithium extraction from lithium nickel manganese cobalt oxide (LiNi<sub>0.5</sub>Mn<sub>0.3</sub>Co<sub>0.2</sub>O, NMC532) at only 50 <sup>°</sup>C without additional reducing agents. Moreover, the appropriate coordination stability between ligands in DES and metal ions from spent LIBs enables selective separation of Li and Mn into the liquid phase while reprecipitating Ni and Co as water-soluble solids. This strategic separation can simplify subsequent metal recovery processes from solvents, offering greater advantages over the non-selective dissolution in conventional hydrometallurgical processes. Accordingly, a four-step protocol was developed, achieving selective and efficient recovery of critical metals from NMC532, with extraction efficiency of over 93 wt % for Li and approximately 60 wt % for Mn, Ni and Co. Techno-economic analysis demonstrates an operating cost of $1.49 and a potential total revenue of $16.35 per kilogram of NMC532 processed for metal recovery based on the current market price. This study introduces a cost-effective and sustainable strategy for metals recovery from spent LIBs with eco-friendly DESs and low-grade heat, reducing the environmental footprint and promoting the circular economy.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"35 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2025.145460","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recycling critical metals from spent lithium-ion batteries (LIBs) is vital as their widespread application accelerates the depletion of mineral resources. This study presents a sustainable and energy-efficient process for recovering metals from spent LIBs using a deep eutectic solvent (DES) composed of choline chloride (ChCl) and lactic acid (LA) at low temperature, enabling effective utilization of low-grade heat. ChCl:LA DES exhibits strong reducibility and high proton concentration, contributing to efficient lithium extraction from lithium nickel manganese cobalt oxide (LiNi0.5Mn0.3Co0.2O, NMC532) at only 50 °C without additional reducing agents. Moreover, the appropriate coordination stability between ligands in DES and metal ions from spent LIBs enables selective separation of Li and Mn into the liquid phase while reprecipitating Ni and Co as water-soluble solids. This strategic separation can simplify subsequent metal recovery processes from solvents, offering greater advantages over the non-selective dissolution in conventional hydrometallurgical processes. Accordingly, a four-step protocol was developed, achieving selective and efficient recovery of critical metals from NMC532, with extraction efficiency of over 93 wt % for Li and approximately 60 wt % for Mn, Ni and Co. Techno-economic analysis demonstrates an operating cost of $1.49 and a potential total revenue of $16.35 per kilogram of NMC532 processed for metal recovery based on the current market price. This study introduces a cost-effective and sustainable strategy for metals recovery from spent LIBs with eco-friendly DESs and low-grade heat, reducing the environmental footprint and promoting the circular economy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信