Overcoming efficiency and cost barriers for large-area quantum dot photovoltaics through stable ink engineering

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
Guozheng Shi, Xiaobo Ding, Zeke Liu, Yang Liu, Yifan Chen, Cheng Liu, Zitao Ni, Haibin Wang, Katsuji Ito, Keisuke Igarashi, Kun Feng, Kaicheng Zhang, Larry Lüer, Wei Chen, Xingyi Lyu, Bin Song, Xiang Sun, Lin Yuan, Dong Liu, Yusheng Li, Kunyuan Lu, Wei Deng, Youyong Li, Peter Müller-Buschbaum, Tao Li, Jun Zhong, Satoshi Uchida, Takaya Kubo, Ning Li, Joseph M. Luther, Hiroshi Segawa, Qing Shen, Christoph J. Brabec, Wanli Ma
{"title":"Overcoming efficiency and cost barriers for large-area quantum dot photovoltaics through stable ink engineering","authors":"Guozheng Shi, Xiaobo Ding, Zeke Liu, Yang Liu, Yifan Chen, Cheng Liu, Zitao Ni, Haibin Wang, Katsuji Ito, Keisuke Igarashi, Kun Feng, Kaicheng Zhang, Larry Lüer, Wei Chen, Xingyi Lyu, Bin Song, Xiang Sun, Lin Yuan, Dong Liu, Yusheng Li, Kunyuan Lu, Wei Deng, Youyong Li, Peter Müller-Buschbaum, Tao Li, Jun Zhong, Satoshi Uchida, Takaya Kubo, Ning Li, Joseph M. Luther, Hiroshi Segawa, Qing Shen, Christoph J. Brabec, Wanli Ma","doi":"10.1038/s41560-025-01746-4","DOIUrl":null,"url":null,"abstract":"<p>The bottom-up construction of electronics from colloidal quantum dots (CQDs) could innovate nanotechnology manufacturing through printing. However, the unstable and expensive semiconductive CQD inks make the scaling up of CQD electronics challenging. Here we develop a strategy for engineering the solution chemistry of lead sulfide (PbS) CQD inks prepared from a low-cost direct synthesis method. By creating an iodine-rich environment in weakly coordinating solvents, we convert the iodoplumbates into functional anions, which condense into a robust surface shell. The fully charged electrostatic surface layer prevents aggregation and epitaxial fusion of CQDs, yielding stable inks. By eliminating the fusion-induced inter-band states, we print a compact CQD film with uniformity in three dimensions, flattened energy landscape and improved carrier transport. We achieved a certified efficiency of 13.40% on 0.04 cm<sup>2</sup> cells, with a 300-fold increase in active area, scaling up to a 12.60 cm<sup>2</sup> module with a certified efficiency of 10%.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"4 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01746-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The bottom-up construction of electronics from colloidal quantum dots (CQDs) could innovate nanotechnology manufacturing through printing. However, the unstable and expensive semiconductive CQD inks make the scaling up of CQD electronics challenging. Here we develop a strategy for engineering the solution chemistry of lead sulfide (PbS) CQD inks prepared from a low-cost direct synthesis method. By creating an iodine-rich environment in weakly coordinating solvents, we convert the iodoplumbates into functional anions, which condense into a robust surface shell. The fully charged electrostatic surface layer prevents aggregation and epitaxial fusion of CQDs, yielding stable inks. By eliminating the fusion-induced inter-band states, we print a compact CQD film with uniformity in three dimensions, flattened energy landscape and improved carrier transport. We achieved a certified efficiency of 13.40% on 0.04 cm2 cells, with a 300-fold increase in active area, scaling up to a 12.60 cm2 module with a certified efficiency of 10%.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信