A simple and efficient joint measurement strategy for estimating fermionic observables and Hamiltonians

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Joanna Majsak, Daniel McNulty, Michał Oszmaniec
{"title":"A simple and efficient joint measurement strategy for estimating fermionic observables and Hamiltonians","authors":"Joanna Majsak, Daniel McNulty, Michał Oszmaniec","doi":"10.1038/s41534-025-00957-7","DOIUrl":null,"url":null,"abstract":"<p>We propose a simple scheme to estimate fermionic observables and Hamiltonians relevant in quantum chemistry and correlated fermionic systems. Our approach is based on implementing a measurement that jointly measures noisy versions of any product of two or four Majorana operators in an <i>N</i> mode fermionic system. To realize our measurement we use: (i) a randomization over a set of unitaries that realize products of Majorana fermion operators; (ii) a unitary, sampled at random from a constant-size set of suitably chosen fermionic Gaussian unitaries; (iii) a measurement of fermionic occupation numbers; (iv) suitable post-processing. Our scheme can estimate expectation values of all quadratic and quartic Majorana monomials to <i>ϵ</i> precision using <span>\\({\\mathcal{O}}(N\\log (N)/{\\epsilon }^{2})\\)</span> and <span>\\({\\mathcal{O}}({N}^{2}\\log (N)/{\\epsilon }^{2})\\)</span> measurement rounds respectively, matching the performance offered by fermionic classical shadows<sup>1,2</sup>. In certain settings, such as a rectangular lattice of qubits which encode an <i>N</i> mode fermionic system via the Jordan-Wigner transformation, our scheme can be implemented in circuit depth <span>\\({\\mathcal{O}}({N}^{1/2})\\)</span> with <span>\\({\\mathcal{O}}({N}^{3/2})\\)</span> two-qubit gates, offering an improvement over fermionic and matchgate classical shadows that require depth <span>\\({\\mathcal{O}}(N)\\)</span> and <span>\\({\\mathcal{O}}({N}^{2})\\)</span> two-qubit gates. By benchmarking our method on exemplary molecular Hamiltonians and observing performances comparable to fermionic classical shadows, we demonstrate a novel, competitive alternative to existing strategies.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"31 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-00957-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a simple scheme to estimate fermionic observables and Hamiltonians relevant in quantum chemistry and correlated fermionic systems. Our approach is based on implementing a measurement that jointly measures noisy versions of any product of two or four Majorana operators in an N mode fermionic system. To realize our measurement we use: (i) a randomization over a set of unitaries that realize products of Majorana fermion operators; (ii) a unitary, sampled at random from a constant-size set of suitably chosen fermionic Gaussian unitaries; (iii) a measurement of fermionic occupation numbers; (iv) suitable post-processing. Our scheme can estimate expectation values of all quadratic and quartic Majorana monomials to ϵ precision using \({\mathcal{O}}(N\log (N)/{\epsilon }^{2})\) and \({\mathcal{O}}({N}^{2}\log (N)/{\epsilon }^{2})\) measurement rounds respectively, matching the performance offered by fermionic classical shadows1,2. In certain settings, such as a rectangular lattice of qubits which encode an N mode fermionic system via the Jordan-Wigner transformation, our scheme can be implemented in circuit depth \({\mathcal{O}}({N}^{1/2})\) with \({\mathcal{O}}({N}^{3/2})\) two-qubit gates, offering an improvement over fermionic and matchgate classical shadows that require depth \({\mathcal{O}}(N)\) and \({\mathcal{O}}({N}^{2})\) two-qubit gates. By benchmarking our method on exemplary molecular Hamiltonians and observing performances comparable to fermionic classical shadows, we demonstrate a novel, competitive alternative to existing strategies.

Abstract Image

估计费米子可观测量和哈密顿量的一种简单有效的联合测量策略
我们提出了一个简单的方案来估计量子化学和相关费米子系统中相关的费米子观测量和哈密顿量。我们的方法是基于实现一种测量,该测量联合测量N模费米子系统中两个或四个马约拉纳算子的任何乘积的噪声版本。为了实现我们的测量,我们使用:(i)在一组实现马约拉纳费米子算子积的酉元上进行随机化;(ii)从适当选择的恒定大小的费米子高斯酉元集合中随机抽取的酉元;(iii)费米子占用数的测量;(iv)适当的后处理。我们的方案可以分别使用\({\mathcal{O}}(N\log (N)/{\epsilon }^{2})\)和\({\mathcal{O}}({N}^{2}\log (N)/{\epsilon }^{2})\)测量轮将所有二次和四次Majorana单项式的期望值估计到λ精度,与费米子经典阴影提供的性能相匹配1,2。在某些情况下,例如通过Jordan-Wigner变换编码N模费米子系统的量子位的矩形晶格,我们的方案可以在电路深度\({\mathcal{O}}({N}^{1/2})\)中使用\({\mathcal{O}}({N}^{3/2})\)双量子位门实现,提供了对需要深度\({\mathcal{O}}(N)\)和\({\mathcal{O}}({N}^{2})\)双量子位门的费米子和匹配门经典阴影的改进。通过对我们的方法在典型分子哈密顿量上进行基准测试,并观察与费米子经典阴影相当的性能,我们展示了一种新的、有竞争力的替代现有策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信