Revisiting the Nanofluid Behavior of Polysulfides in Carbon-Based Interlayers: Longitudinal Osmotic Diffusion and Transverse Radiation-Distribution Induced by Mn-Based Catalysts

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hangqi Yang, Zhaoyang Han, Tianci Ma, Kaiquan He, Chaoqun Shang
{"title":"Revisiting the Nanofluid Behavior of Polysulfides in Carbon-Based Interlayers: Longitudinal Osmotic Diffusion and Transverse Radiation-Distribution Induced by Mn-Based Catalysts","authors":"Hangqi Yang, Zhaoyang Han, Tianci Ma, Kaiquan He, Chaoqun Shang","doi":"10.1002/adfm.202504640","DOIUrl":null,"url":null,"abstract":"Carbon-based interlayer as the secondary current collector is a typical approach for suppressing the polysulfide shuttle effect in lithium-sulfur batteries (LSBs). The effective operating lifespan is determined by the balance between the local polysulfide concentration and bearing capacity of interlayers. However, the microscopic diffusion of polysulfides within interlayers under multiple force fields remains unclear, particularly the effect of catalyst on the multi-scale diffusion behavior. Herein, the first identification is reported of the polysulfide diffusion in interlayer with a coupling effect of longitudinal osmotic and transverse radioactive diffusion through revisiting Mn-based catalysts (Mn-X, X = N, O, or P). In addition to electric field forces during charging and discharging, the free polysulfides sustain transverse tension, leading to radiation diffusion behavior. This adaptive adjustment optimizes polysulfide distribution, mitigating the risk of interlayer deactivation caused by excessive local concentration. The extent of lateral radioactive diffusion is positively correlated with the physicochemical adsorption capacity of catalysts for polysulfides in the interlayer. Specifically, the interlayer with stronger static adsorption for polysulfides demonstrates a broader radiation diffusion range. This work re-evaluates the polysulfide diffusion behavior within the interlayers, further guiding the design of high performance secondary current collector.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"43 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202504640","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon-based interlayer as the secondary current collector is a typical approach for suppressing the polysulfide shuttle effect in lithium-sulfur batteries (LSBs). The effective operating lifespan is determined by the balance between the local polysulfide concentration and bearing capacity of interlayers. However, the microscopic diffusion of polysulfides within interlayers under multiple force fields remains unclear, particularly the effect of catalyst on the multi-scale diffusion behavior. Herein, the first identification is reported of the polysulfide diffusion in interlayer with a coupling effect of longitudinal osmotic and transverse radioactive diffusion through revisiting Mn-based catalysts (Mn-X, X = N, O, or P). In addition to electric field forces during charging and discharging, the free polysulfides sustain transverse tension, leading to radiation diffusion behavior. This adaptive adjustment optimizes polysulfide distribution, mitigating the risk of interlayer deactivation caused by excessive local concentration. The extent of lateral radioactive diffusion is positively correlated with the physicochemical adsorption capacity of catalysts for polysulfides in the interlayer. Specifically, the interlayer with stronger static adsorption for polysulfides demonstrates a broader radiation diffusion range. This work re-evaluates the polysulfide diffusion behavior within the interlayers, further guiding the design of high performance secondary current collector.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信