Zelin Zhu, Cairong Li, Yating Lin, Lin Li, Kun Liu, Wei Wen, Shan Ding, Changren Zhou, Yuxiao Lai, Binghong Luo
{"title":"Versatile 3D Printing Scaffold with Spatiotemporal Release of Multiple Drugs for Bone Regeneration","authors":"Zelin Zhu, Cairong Li, Yating Lin, Lin Li, Kun Liu, Wei Wen, Shan Ding, Changren Zhou, Yuxiao Lai, Binghong Luo","doi":"10.1021/acsnano.4c13265","DOIUrl":null,"url":null,"abstract":"Implanting a three-dimensional (3D) printing scaffold is one of the most effective ways for treating bone defects. However, the process of bone repair is extremely complex, which requires the scaffold to comply with this process, play early antibacterial roles after implantation, and promote angiogenesis and osteogenesis in the later stage. In this study, layered double hydroxides (LDHs), a type of 2D inorganic nanomaterial, were employed to efficiently load osteogenic and angiogenic dimethyloxalylglycine (DMOG) based on anion exchange. Further, the DMOG-loaded LDHs and eugenol, a natural antibacterial agent, were simultaneously modified onto the surface of 3D printing poly(<i>L</i>-lactide) (PLLA) scaffolds via a polydopamine layer, thereby constructing a 3D printing scaffold capable of realizing spatiotemporally controlled release of different bioactive drugs. Specifically, eugenol is released rapidly in the early stage to play an antibacterial role, while DMOG is sustainably released from the LDHs to promote long-term osteogenesis and angiogenesis. Besides, the surface-coated DMOG-loaded LDHs can not only mechanically strengthen the 3D printing PLLA scaffold but also promote the osteogenic activity of the scaffold due to the released Mg<sup>2+</sup> with the decomposition of LDHs. Also noteworthy, we found that eugenol, DMOG, and LDHs exert synergistic effects in promoting the proliferation, angiogenesis, and osteogenic differentiation of cells in vitro, as well as accelerating vascularized bone formation in vivo. This work presents an approach to fabricating 3D-printed scaffolds with spatiotemporal release capabilities for multiple drugs, advancing bone repair.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"73 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13265","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Implanting a three-dimensional (3D) printing scaffold is one of the most effective ways for treating bone defects. However, the process of bone repair is extremely complex, which requires the scaffold to comply with this process, play early antibacterial roles after implantation, and promote angiogenesis and osteogenesis in the later stage. In this study, layered double hydroxides (LDHs), a type of 2D inorganic nanomaterial, were employed to efficiently load osteogenic and angiogenic dimethyloxalylglycine (DMOG) based on anion exchange. Further, the DMOG-loaded LDHs and eugenol, a natural antibacterial agent, were simultaneously modified onto the surface of 3D printing poly(L-lactide) (PLLA) scaffolds via a polydopamine layer, thereby constructing a 3D printing scaffold capable of realizing spatiotemporally controlled release of different bioactive drugs. Specifically, eugenol is released rapidly in the early stage to play an antibacterial role, while DMOG is sustainably released from the LDHs to promote long-term osteogenesis and angiogenesis. Besides, the surface-coated DMOG-loaded LDHs can not only mechanically strengthen the 3D printing PLLA scaffold but also promote the osteogenic activity of the scaffold due to the released Mg2+ with the decomposition of LDHs. Also noteworthy, we found that eugenol, DMOG, and LDHs exert synergistic effects in promoting the proliferation, angiogenesis, and osteogenic differentiation of cells in vitro, as well as accelerating vascularized bone formation in vivo. This work presents an approach to fabricating 3D-printed scaffolds with spatiotemporal release capabilities for multiple drugs, advancing bone repair.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.