Pan Ying, Qingyang Jian, Yaru Gong, Tong Song, Yuxuan Yang, Yang Geng, Junquan Huang, Rongxin Sun, Chen Chen, Tao Shen, Yanan Li, Wei Dou, Congmin Liang, Yuqi Liu, Deshang Xiang, Tao Feng, Xiaoyu Fei, Yongsheng Zhang, Kun Song, Yang Zhang, Haijun Wu, Guodong Tang
{"title":"Matrix plainification leads to high thermoelectric performance in plastic Cu2Se/SnSe composites","authors":"Pan Ying, Qingyang Jian, Yaru Gong, Tong Song, Yuxuan Yang, Yang Geng, Junquan Huang, Rongxin Sun, Chen Chen, Tao Shen, Yanan Li, Wei Dou, Congmin Liang, Yuqi Liu, Deshang Xiang, Tao Feng, Xiaoyu Fei, Yongsheng Zhang, Kun Song, Yang Zhang, Haijun Wu, Guodong Tang","doi":"10.1038/s41467-025-58484-0","DOIUrl":null,"url":null,"abstract":"<p>Thermoelectric technology exhibits significant potential for power generation and electronic cooling. In this study, we report the achievement of exceptional thermoelectric performance and high plasticity in stable Cu<sub>2</sub>Se/SnSe composites. A novel matrix plainification strategy was employed to eliminate lattice vacancies within the Cu<sub>2</sub>Se matrix of the Cu<sub>2</sub>Se/SnSe composites, resulting in a marked improvement in carrier mobility and power factor. The presence of quasi-coherent interfaces induces phonon scattering, reducing lattice thermal conductivity without compromising carrier mobility. Consequently, a high figure of merit (<i>ZT</i>) of 3.3 was attained in the Cu<sub>2</sub>Se/5 wt.% Sn<sub>0.96</sub>Pb<sub>0.01</sub>Zn<sub>0.03</sub>Se composite. Additionally, the presence of high-density nanotwins imparts remarkable plasticity to the composite, yielding a compressive strain of 12%. The secondary phase contributes to the stability of the composite by hindering the extensive migration of Cu ions through bonding interactions. Our findings present a novel strategy for enhancing the thermoelectric performance of composite semiconductors, with potential applicability to other thermoelectric systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"37 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58484-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoelectric technology exhibits significant potential for power generation and electronic cooling. In this study, we report the achievement of exceptional thermoelectric performance and high plasticity in stable Cu2Se/SnSe composites. A novel matrix plainification strategy was employed to eliminate lattice vacancies within the Cu2Se matrix of the Cu2Se/SnSe composites, resulting in a marked improvement in carrier mobility and power factor. The presence of quasi-coherent interfaces induces phonon scattering, reducing lattice thermal conductivity without compromising carrier mobility. Consequently, a high figure of merit (ZT) of 3.3 was attained in the Cu2Se/5 wt.% Sn0.96Pb0.01Zn0.03Se composite. Additionally, the presence of high-density nanotwins imparts remarkable plasticity to the composite, yielding a compressive strain of 12%. The secondary phase contributes to the stability of the composite by hindering the extensive migration of Cu ions through bonding interactions. Our findings present a novel strategy for enhancing the thermoelectric performance of composite semiconductors, with potential applicability to other thermoelectric systems.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.