PLGA nanoparticle-mediated anti-inflammatory gene delivery for the treatment of neuropathic pain.

Boomin Choi, Subeen Lee, Seohyun Chung, Ellane Eda Barcelona, Jinpyo Hong, Sung Joong Lee
{"title":"PLGA nanoparticle-mediated anti-inflammatory gene delivery for the treatment of neuropathic pain.","authors":"Boomin Choi, Subeen Lee, Seohyun Chung, Ellane Eda Barcelona, Jinpyo Hong, Sung Joong Lee","doi":"10.1080/17435889.2025.2487410","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>This study aimed to mitigate neuropathic pain behavior in a sciatic nerve transection (SNT)-induced mouse model by delivering anti-inflammatory cytokines - interleukin-4 (IL-4), interleukin-10 (IL-10), and transforming growth factor-beta 1 (TGF-β1) - via poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs).</p><p><strong>Materials & methods: </strong>Upon gene delivery of IL-4, IL-10, and TGF- β1, the anti-inflammatory effects and induction of microglia M2 polarization were evaluated. Plasmid (IL-4, IL-10, and TGF-β1)-encapsulated PLGA NPs (PLGA@IL-4, PLGA@IL-10, and PLGA@TGF-β1) were synthesized and characterized for size, zeta potential, cellular toxicity, and cellular uptake. The analgesic effect of anti-inflammatory gene delivery using PLGA NPs was then assessed in a mouse model of neuropathic pain.</p><p><strong>Results: </strong>Gene delivery of IL-4, IL-10, and TGF-β1 showed a significant anti-inflammatory effect in LPS-treated cells and IL-4 strongly promoted microglia M2 polarization in vitro. PLGA NPs successfully delivered the anti-inflammatory cytokine-coding genes into mouse spinal cord cells, specifically targeting microglia. PLGA@IL-4, PLGA@IL-10, and PLGA@TGF-β1 NPs produced analgesic effects in a SNT-induced mouse neuropathic pain model. Notably, PLGA@IL-4 demonstrated the most effective and remarkably long-lasting analgesic effect, strongly enhancing microglia M2 polarization in spinal cord microglia.</p><p><strong>Conclusion: </strong>Gene therapy using PLGA NPs for overexpression of anti-inflammatory cytokines could be a promising strategy for the treatment of neuropathic pain.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2025.2487410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: This study aimed to mitigate neuropathic pain behavior in a sciatic nerve transection (SNT)-induced mouse model by delivering anti-inflammatory cytokines - interleukin-4 (IL-4), interleukin-10 (IL-10), and transforming growth factor-beta 1 (TGF-β1) - via poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs).

Materials & methods: Upon gene delivery of IL-4, IL-10, and TGF- β1, the anti-inflammatory effects and induction of microglia M2 polarization were evaluated. Plasmid (IL-4, IL-10, and TGF-β1)-encapsulated PLGA NPs (PLGA@IL-4, PLGA@IL-10, and PLGA@TGF-β1) were synthesized and characterized for size, zeta potential, cellular toxicity, and cellular uptake. The analgesic effect of anti-inflammatory gene delivery using PLGA NPs was then assessed in a mouse model of neuropathic pain.

Results: Gene delivery of IL-4, IL-10, and TGF-β1 showed a significant anti-inflammatory effect in LPS-treated cells and IL-4 strongly promoted microglia M2 polarization in vitro. PLGA NPs successfully delivered the anti-inflammatory cytokine-coding genes into mouse spinal cord cells, specifically targeting microglia. PLGA@IL-4, PLGA@IL-10, and PLGA@TGF-β1 NPs produced analgesic effects in a SNT-induced mouse neuropathic pain model. Notably, PLGA@IL-4 demonstrated the most effective and remarkably long-lasting analgesic effect, strongly enhancing microglia M2 polarization in spinal cord microglia.

Conclusion: Gene therapy using PLGA NPs for overexpression of anti-inflammatory cytokines could be a promising strategy for the treatment of neuropathic pain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信