{"title":"Single-cell meta-analysis of T cells reveals clonal dynamics of response to checkpoint immunotherapy.","authors":"Ofir Shorer, Asaf Pinhasi, Keren Yizhak","doi":"10.1016/j.xgen.2025.100842","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the crucial role of T cell clones in anti-tumor activity, their characterization and association with clinical outcomes following immune checkpoint inhibitors are lacking. Here, we analyzed paired single-cell RNA sequencing/T cell receptor sequencing of 767,606 T cells across 460 samples spanning 6 cancer types. We found a robust signature of response based on expanded CD8<sup>+</sup> clones that differentiates responders from non-responders. Analysis of persistent clones showed transcriptional changes that are differentially induced by therapy in the different response groups, suggesting an improved reinvigoration capacity in responding patients. Moreover, a gene trajectory analysis revealed changes in the pseudo-temporal state of de novo clones that are associated with clinical outcomes. Lastly, we found that clones shared between tumor and blood are more abundant in non-responders and execute distinct transcriptional programs. Overall, our results highlight differences in clonal transcriptional states that are linked to patient response, offering valuable insights into the mechanisms driving effective anti-tumor immunity.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100842"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the crucial role of T cell clones in anti-tumor activity, their characterization and association with clinical outcomes following immune checkpoint inhibitors are lacking. Here, we analyzed paired single-cell RNA sequencing/T cell receptor sequencing of 767,606 T cells across 460 samples spanning 6 cancer types. We found a robust signature of response based on expanded CD8+ clones that differentiates responders from non-responders. Analysis of persistent clones showed transcriptional changes that are differentially induced by therapy in the different response groups, suggesting an improved reinvigoration capacity in responding patients. Moreover, a gene trajectory analysis revealed changes in the pseudo-temporal state of de novo clones that are associated with clinical outcomes. Lastly, we found that clones shared between tumor and blood are more abundant in non-responders and execute distinct transcriptional programs. Overall, our results highlight differences in clonal transcriptional states that are linked to patient response, offering valuable insights into the mechanisms driving effective anti-tumor immunity.