Integration of biobank-scale genetics and plasma proteomics reveals evidence for causal processes in asthma risk and heterogeneity.

IF 11.1 Q1 CELL BIOLOGY
Lauren J Donoghue, Christian Benner, Diana Chang, Flaviyan Jerome Irudayanathan, Rion K Pendergrass, Brian L Yaspan, Anubha Mahajan, Mark I McCarthy
{"title":"Integration of biobank-scale genetics and plasma proteomics reveals evidence for causal processes in asthma risk and heterogeneity.","authors":"Lauren J Donoghue, Christian Benner, Diana Chang, Flaviyan Jerome Irudayanathan, Rion K Pendergrass, Brian L Yaspan, Anubha Mahajan, Mark I McCarthy","doi":"10.1016/j.xgen.2025.100840","DOIUrl":null,"url":null,"abstract":"<p><p>Hundreds of genetic associations for asthma have been identified, yet translating these findings into mechanistic insights remains challenging. We leveraged plasma proteomics from the UK Biobank Pharma Proteomics Project (UKB-PPP) to identify biomarkers and effectors of asthma risk or heterogeneity using genetic causal inference approaches. We identified 609 proteins associated with asthma status (269 proteins after controlling for body mass index [BMI] and smoking). Analysis of genetically predicted protein levels identified 70 proteins with putative causal roles in asthma risk, including known drug targets and proteins without prior genetic evidence in asthma (e.g., GCHFR, TDRKH, and CLEC7A). The genetic architecture of causally associated proteins provided evidence for a Toll-like receptor (TLR)1-interleukin (IL)-27 asthma axis. Lastly, we identified evidence of causal relationships between proteins and heterogeneous aspects of asthma biology, including between TSPAN8 and neutrophil counts. These findings illustrate that integrating biobank-scale genetics and plasma proteomics can provide a framework to identify therapeutic targets and mechanisms underlying disease risk and heterogeneity.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100840"},"PeriodicalIF":11.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hundreds of genetic associations for asthma have been identified, yet translating these findings into mechanistic insights remains challenging. We leveraged plasma proteomics from the UK Biobank Pharma Proteomics Project (UKB-PPP) to identify biomarkers and effectors of asthma risk or heterogeneity using genetic causal inference approaches. We identified 609 proteins associated with asthma status (269 proteins after controlling for body mass index [BMI] and smoking). Analysis of genetically predicted protein levels identified 70 proteins with putative causal roles in asthma risk, including known drug targets and proteins without prior genetic evidence in asthma (e.g., GCHFR, TDRKH, and CLEC7A). The genetic architecture of causally associated proteins provided evidence for a Toll-like receptor (TLR)1-interleukin (IL)-27 asthma axis. Lastly, we identified evidence of causal relationships between proteins and heterogeneous aspects of asthma biology, including between TSPAN8 and neutrophil counts. These findings illustrate that integrating biobank-scale genetics and plasma proteomics can provide a framework to identify therapeutic targets and mechanisms underlying disease risk and heterogeneity.

生物库规模遗传学和血浆蛋白质组学的整合揭示了哮喘风险和异质性因果过程的证据。
已经确定了数百种与哮喘有关的遗传关联,但将这些发现转化为机制见解仍然具有挑战性。我们利用英国生物银行药物蛋白质组学项目(UKB-PPP)的血浆蛋白质组学,利用遗传因果推理方法鉴定哮喘风险或异质性的生物标志物和效应物。我们确定了609种与哮喘状态相关的蛋白质(在控制体重指数[BMI]和吸烟后发现了269种蛋白质)。对遗传预测蛋白水平的分析确定了70种可能在哮喘风险中起因果作用的蛋白,包括已知的药物靶点和在哮喘中没有遗传证据的蛋白(如GCHFR、TDRKH和cle7a)。因果相关蛋白的遗传结构为toll样受体(TLR)1-白细胞介素(IL)-27哮喘轴提供了证据。最后,我们确定了蛋白质与哮喘生物学异质性方面之间因果关系的证据,包括TSPAN8和中性粒细胞计数之间的因果关系。这些发现表明,结合生物银行规模的遗传学和血浆蛋白质组学可以提供一个框架,以确定潜在的疾病风险和异质性的治疗靶点和机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信