WEE1 inhibition in cancer therapy: Mechanisms, synergies, preclinical insights, and clinical trials

IF 5.5 2区 医学 Q1 HEMATOLOGY
Krishnapriya Thangaretnam , Md Obaidul Islam , Jialun Lv , Ahmed El-Rifai , Ava Perloff , Houda L. Soutto , Dunfa Peng , Zheng Chen
{"title":"WEE1 inhibition in cancer therapy: Mechanisms, synergies, preclinical insights, and clinical trials","authors":"Krishnapriya Thangaretnam ,&nbsp;Md Obaidul Islam ,&nbsp;Jialun Lv ,&nbsp;Ahmed El-Rifai ,&nbsp;Ava Perloff ,&nbsp;Houda L. Soutto ,&nbsp;Dunfa Peng ,&nbsp;Zheng Chen","doi":"10.1016/j.critrevonc.2025.104710","DOIUrl":null,"url":null,"abstract":"<div><div>WEE1 is a serine/threonine kinase that regulates the G2/M checkpoint by phosphorylating CDK1, preventing premature mitotic entry and maintaining genomic stability. Many cancers, particularly those with TP53 mutations, upregulate WEE1 to counteract replication stress and DNA damage, making it a key target for therapy. WEE1 inhibitors, especially adavosertib (AZD1775), have shown strong preclinical and clinical activity in ovarian, breast, gastrointestinal, and head and neck cancers. By inducing mitotic catastrophe and increasing DNA damage, WEE1 inhibition enhances the effectiveness of chemotherapies, including platinum-based agents, antimetabolites, and PARP inhibitors. It also synergizes with radiotherapy and immune checkpoint inhibitors, improving responses in tumors with immune evasion. However, challenges such as acquired resistance, toxicity, and patient selection remain obstacles to clinical implementation. Given the expanding role of WEE1 inhibitors in cancer treatment, a comprehensive review is needed to summarize their biological functions, structural regulation, and therapeutic applications. This review highlights key findings from preclinical and clinical studies, explores emerging biomarkers for patient stratification, and discusses strategies to overcome resistance and toxicity. By integrating current knowledge, we aim to provide insights into optimizing WEE1-targeted therapies and guiding future research to maximize their clinical impact in cancer treatment.</div></div>","PeriodicalId":11358,"journal":{"name":"Critical reviews in oncology/hematology","volume":"211 ","pages":"Article 104710"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in oncology/hematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040842825000988","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

WEE1 is a serine/threonine kinase that regulates the G2/M checkpoint by phosphorylating CDK1, preventing premature mitotic entry and maintaining genomic stability. Many cancers, particularly those with TP53 mutations, upregulate WEE1 to counteract replication stress and DNA damage, making it a key target for therapy. WEE1 inhibitors, especially adavosertib (AZD1775), have shown strong preclinical and clinical activity in ovarian, breast, gastrointestinal, and head and neck cancers. By inducing mitotic catastrophe and increasing DNA damage, WEE1 inhibition enhances the effectiveness of chemotherapies, including platinum-based agents, antimetabolites, and PARP inhibitors. It also synergizes with radiotherapy and immune checkpoint inhibitors, improving responses in tumors with immune evasion. However, challenges such as acquired resistance, toxicity, and patient selection remain obstacles to clinical implementation. Given the expanding role of WEE1 inhibitors in cancer treatment, a comprehensive review is needed to summarize their biological functions, structural regulation, and therapeutic applications. This review highlights key findings from preclinical and clinical studies, explores emerging biomarkers for patient stratification, and discusses strategies to overcome resistance and toxicity. By integrating current knowledge, we aim to provide insights into optimizing WEE1-targeted therapies and guiding future research to maximize their clinical impact in cancer treatment.
癌症治疗中的 WEE1 抑制:机制、协同作用、临床前见解和临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
3.20%
发文量
213
审稿时长
55 days
期刊介绍: Critical Reviews in Oncology/Hematology publishes scholarly, critical reviews in all fields of oncology and hematology written by experts from around the world. Critical Reviews in Oncology/Hematology is the Official Journal of the European School of Oncology (ESO) and the International Society of Liquid Biopsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信