Cost optimization for Computer Numerical Control machining workshop: A queueing modeling approach using the meta-heuristic techniques.

Parmeet Kaur Chahal, Kamlesh Kumar
{"title":"Cost optimization for Computer Numerical Control machining workshop: A queueing modeling approach using the meta-heuristic techniques.","authors":"Parmeet Kaur Chahal, Kamlesh Kumar","doi":"10.1016/j.isatra.2025.03.018","DOIUrl":null,"url":null,"abstract":"<p><p>This research paper introduces an innovative approach to optimize repair of failed Computer Numerical Control (CNC) machines within CNC machining workshops by leveraging queueing theory. The proposed model addresses a spectrum of real-world scenarios encountered in manufacturing environments, including CNC machine failures, robotic server breakdowns, reneging behavior of failed CNC machines, and mechanisms to handle unsatisfactory repairs. In this system, failed CNC machines are attended by a single robotic server following a first come first served protocol, while also accounting for potential breakdowns of the robotic server during servicing. The arrival of failed CNC machines is regulated using the F-policy, and repairs to the robotic server are conducted following Bernoulli's p-phases under a threshold recovery (Q) policy. Through the development of steady-state equations of a system and their solutions through matrix-analytic techniques, the distribution of queue sizes within the system is derived. Numerical results are presented graphically to illustrate the influence of various parameters on overall system performance. Additionally, sensitivity analysis on total expected costs are conducted to assess the impact of parameter variations. To optimize system costs, three meta-heuristic approaches are employed: Particle Swarm Optimization(PSO), Ant Colony Optimization(ACO), and Flower Pollination Algorithm(FPA). Comparative analysis of these techniques' performances is conducted using data generated through their application. This novel combination of theoretical modeling, numerical analysis, and meta-heuristic optimization offers a comprehensive framework for enhancing efficiency and cost-effectiveness in CNC machining workshops.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.03.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research paper introduces an innovative approach to optimize repair of failed Computer Numerical Control (CNC) machines within CNC machining workshops by leveraging queueing theory. The proposed model addresses a spectrum of real-world scenarios encountered in manufacturing environments, including CNC machine failures, robotic server breakdowns, reneging behavior of failed CNC machines, and mechanisms to handle unsatisfactory repairs. In this system, failed CNC machines are attended by a single robotic server following a first come first served protocol, while also accounting for potential breakdowns of the robotic server during servicing. The arrival of failed CNC machines is regulated using the F-policy, and repairs to the robotic server are conducted following Bernoulli's p-phases under a threshold recovery (Q) policy. Through the development of steady-state equations of a system and their solutions through matrix-analytic techniques, the distribution of queue sizes within the system is derived. Numerical results are presented graphically to illustrate the influence of various parameters on overall system performance. Additionally, sensitivity analysis on total expected costs are conducted to assess the impact of parameter variations. To optimize system costs, three meta-heuristic approaches are employed: Particle Swarm Optimization(PSO), Ant Colony Optimization(ACO), and Flower Pollination Algorithm(FPA). Comparative analysis of these techniques' performances is conducted using data generated through their application. This novel combination of theoretical modeling, numerical analysis, and meta-heuristic optimization offers a comprehensive framework for enhancing efficiency and cost-effectiveness in CNC machining workshops.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信