Production and educational value of anatomical megamoulages.

IF 2.7 2区 医学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Homayoon Bana Derakhshan, Hamed Shoorei, Gholamreza Hassanzadeh, Mohammad Reza Mansoorian, Jalil Moshari, Moosa Sajjadi, Mehrnaz Ghaffari, Sajed Khaledi, Jamal Majidpoor
{"title":"Production and educational value of anatomical megamoulages.","authors":"Homayoon Bana Derakhshan, Hamed Shoorei, Gholamreza Hassanzadeh, Mohammad Reza Mansoorian, Jalil Moshari, Moosa Sajjadi, Mehrnaz Ghaffari, Sajed Khaledi, Jamal Majidpoor","doi":"10.1186/s12909-025-07058-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anatomy is a crucial aspect of biological sciences and medical education, playing a pivotal role in various clinical practices. To enhance the existing curriculum and improve students' spatial understanding of anatomy, educators have explored the use of moulages. In a groundbreaking study conducted in 2022-2023, the effectiveness of megamoulages in enhancing the comprehensive understanding of anatomy among medical students at Gonabad and Kurdistan University of Medical Sciences was thoroughly assessed. The produced megamoulages are not simply larger than conventional moulages; rather, they present anatomical details more clearly, including maximum anatomical points, structures, and neuro-vascular relationships as described in reference books and articles, which were not adequately represented in previous models, and they are also hand-painted.</p><p><strong>Methods: </strong>The production of megamoulages involved a comprehensive 20-month sequential process. Initially, a needs assessment questionnaire was administered to medical students, residents, medical faculty surgeons, and anatomists to evaluate the project's feasibility and significance. Results revealed that the majority of respondents (88%) believed the production of megamoulages would facilitate anatomy education. Anatomical models were strategically selected based on their complexity and the unavailability of similar models from foreign companies. Megamoulages (two groups of megamoulages: the first includes unique models, such as a sectional megamoulage of the brainstem that displays all structures in detail, while the second group (cerebellum and mandible) as improved quality models, which are similar to existing ones) were designed using 3D software, printed in sections, and assembled with magnets. The completed moulages were subjected to thorough evaluations following Kirkpatrick's model, which included methods such as smile sheets and scientific tests administered to randomly divided third-semester medical students in the mentioned universities.</p><p><strong>Results: </strong>In both universities, student satisfaction with the use of megamoulages was significantly higher compared to conventional moulages (P < 0.05). Additionally, in a written test, students who utilized megamoulages achieved an average score that was about 2.73 points higher than those who used conventional moulages (P < 0.05).</p><p><strong>Conclusion: </strong>The implementation of megamoulages significantly enhanced the scores of anatomy learners. This study underscores the importance of innovative teaching tools, such as megamoulages, in improving anatomical education and increasing student satisfaction.</p>","PeriodicalId":51234,"journal":{"name":"BMC Medical Education","volume":"25 1","pages":"485"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Education","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12909-025-07058-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Anatomy is a crucial aspect of biological sciences and medical education, playing a pivotal role in various clinical practices. To enhance the existing curriculum and improve students' spatial understanding of anatomy, educators have explored the use of moulages. In a groundbreaking study conducted in 2022-2023, the effectiveness of megamoulages in enhancing the comprehensive understanding of anatomy among medical students at Gonabad and Kurdistan University of Medical Sciences was thoroughly assessed. The produced megamoulages are not simply larger than conventional moulages; rather, they present anatomical details more clearly, including maximum anatomical points, structures, and neuro-vascular relationships as described in reference books and articles, which were not adequately represented in previous models, and they are also hand-painted.

Methods: The production of megamoulages involved a comprehensive 20-month sequential process. Initially, a needs assessment questionnaire was administered to medical students, residents, medical faculty surgeons, and anatomists to evaluate the project's feasibility and significance. Results revealed that the majority of respondents (88%) believed the production of megamoulages would facilitate anatomy education. Anatomical models were strategically selected based on their complexity and the unavailability of similar models from foreign companies. Megamoulages (two groups of megamoulages: the first includes unique models, such as a sectional megamoulage of the brainstem that displays all structures in detail, while the second group (cerebellum and mandible) as improved quality models, which are similar to existing ones) were designed using 3D software, printed in sections, and assembled with magnets. The completed moulages were subjected to thorough evaluations following Kirkpatrick's model, which included methods such as smile sheets and scientific tests administered to randomly divided third-semester medical students in the mentioned universities.

Results: In both universities, student satisfaction with the use of megamoulages was significantly higher compared to conventional moulages (P < 0.05). Additionally, in a written test, students who utilized megamoulages achieved an average score that was about 2.73 points higher than those who used conventional moulages (P < 0.05).

Conclusion: The implementation of megamoulages significantly enhanced the scores of anatomy learners. This study underscores the importance of innovative teaching tools, such as megamoulages, in improving anatomical education and increasing student satisfaction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Education
BMC Medical Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
4.90
自引率
11.10%
发文量
795
审稿时长
6 months
期刊介绍: BMC Medical Education is an open access journal publishing original peer-reviewed research articles in relation to the training of healthcare professionals, including undergraduate, postgraduate, and continuing education. The journal has a special focus on curriculum development, evaluations of performance, assessment of training needs and evidence-based medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信