{"title":"Transcriptional landscapes underlying Notch-induced lineage conversion and plasticity of mammary basal cells.","authors":"Candice Merle, Calvin Rodrigues, Atefeh Pourkhalili Langeroudi, Robin Journot, Fabian Rost, Yiteng Dang, Steffen Rulands, Silvia Fre","doi":"10.1038/s44318-025-00424-1","DOIUrl":null,"url":null,"abstract":"<p><p>The mammary epithelium derives from multipotent mammary stem cells (MaSCs) that engage into differentiation during embryonic development. However, adult MaSCs maintain the ability to reactivate multipotency in non-physiological contexts. We previously reported that Notch1 activation in committed basal cells triggers a basal-to-luminal cell fate switch in the mouse mammary gland. Here, we report conservation of this mechanism and found that in addition to the mammary gland, constitutive Notch1 signaling induces a basal-to-luminal cell fate switch in adult cells of the lacrimal gland, the salivary gland, and the prostate. Since the lineage transition is progressive in time, we performed single-cell transcriptomic analysis on index-sorted mammary cells at different stages of lineage conversion, generating a temporal map of changes in cell identity. Combining single-cell analyses with organoid assays, we demonstrate that cell proliferation is indispensable for this lineage conversion. We also reveal the individual transcriptional landscapes underlying the cellular plasticity switching of committed mammary cells in vivo with spatial and temporal resolution. Given the roles of Notch signaling in cancer, these results may help to better understand the mechanisms that drive cellular transformation.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00424-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The mammary epithelium derives from multipotent mammary stem cells (MaSCs) that engage into differentiation during embryonic development. However, adult MaSCs maintain the ability to reactivate multipotency in non-physiological contexts. We previously reported that Notch1 activation in committed basal cells triggers a basal-to-luminal cell fate switch in the mouse mammary gland. Here, we report conservation of this mechanism and found that in addition to the mammary gland, constitutive Notch1 signaling induces a basal-to-luminal cell fate switch in adult cells of the lacrimal gland, the salivary gland, and the prostate. Since the lineage transition is progressive in time, we performed single-cell transcriptomic analysis on index-sorted mammary cells at different stages of lineage conversion, generating a temporal map of changes in cell identity. Combining single-cell analyses with organoid assays, we demonstrate that cell proliferation is indispensable for this lineage conversion. We also reveal the individual transcriptional landscapes underlying the cellular plasticity switching of committed mammary cells in vivo with spatial and temporal resolution. Given the roles of Notch signaling in cancer, these results may help to better understand the mechanisms that drive cellular transformation.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.