{"title":"Scale selection and machine learning based cell segmentation and tracking in time lapse microscopy.","authors":"Nagasoujanya Annasamudram, Jian Zhao, Olaitan Oluwadare, Aashish Prashanth, Sokratis Makrogiannis","doi":"10.1038/s41598-025-95993-w","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring and tracking of cell motion is a key component for understanding disease mechanisms and evaluating the effects of treatments. Time-lapse optical microscopy has been commonly employed for studying cell cycle phases. However, usual manual cell tracking is very time consuming and has poor reproducibility. Automated cell tracking techniques are challenged by variability of cell region intensity distributions and resolution limitations. In this work, we introduce a comprehensive cell segmentation and tracking methodology. A key contribution of this work is that it employs multi-scale space-time interest point detection and characterization for automatic scale selection and cell segmentation. Another contribution is the use of a neural network with class prototype balancing for detection of cell regions. This work also offers a structured mathematical framework that uses graphs for track generation and cell event detection. We evaluated cell segmentation, detection, and tracking performance of our method on time-lapse sequences of the Cell Tracking Challenge (CTC). We also compared our technique to top performing techniques from CTC. Performance evaluation results indicate that the proposed methodology is competitive with these techniques, and that it generalizes very well to diverse cell types and sizes, and multiple imaging techniques. The code of our method is publicly available on https://github.com/smakrogi/CSTQ_Pub/ , (release v.3.2).</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11717"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95993-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring and tracking of cell motion is a key component for understanding disease mechanisms and evaluating the effects of treatments. Time-lapse optical microscopy has been commonly employed for studying cell cycle phases. However, usual manual cell tracking is very time consuming and has poor reproducibility. Automated cell tracking techniques are challenged by variability of cell region intensity distributions and resolution limitations. In this work, we introduce a comprehensive cell segmentation and tracking methodology. A key contribution of this work is that it employs multi-scale space-time interest point detection and characterization for automatic scale selection and cell segmentation. Another contribution is the use of a neural network with class prototype balancing for detection of cell regions. This work also offers a structured mathematical framework that uses graphs for track generation and cell event detection. We evaluated cell segmentation, detection, and tracking performance of our method on time-lapse sequences of the Cell Tracking Challenge (CTC). We also compared our technique to top performing techniques from CTC. Performance evaluation results indicate that the proposed methodology is competitive with these techniques, and that it generalizes very well to diverse cell types and sizes, and multiple imaging techniques. The code of our method is publicly available on https://github.com/smakrogi/CSTQ_Pub/ , (release v.3.2).
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.