{"title":"Chrysophanol Attenuates Cardiac Fibrosis and Arrhythmia by Suppressing the Endoplasmic Reticulum Stress/Pyroptosis Axis and Inflammation.","authors":"Chengyin Liu, Shuang Qiu, Xiaoqiong Liu, Rui Huang, Zhao Fang","doi":"10.1002/ptr.8476","DOIUrl":null,"url":null,"abstract":"<p><p>Chrysophanol (CHR), one of the principal bioactive compounds extracted from the rhizome of Rheum palmatum L., is known for its anti-inflammatory, antioxidative, anti-cancer, and cardioprotective effects. However, the effect of CHR on cardiac fibrosis remains elusive. In this study, mice were administered isoproterenol (ISO) to induce cardiac fibrosis in vivo, and cardiac fibroblasts were pretreated with transforming growth factor-β1 (TGF-β1) to induce the transformation of fibroblasts into myofibroblasts in vitro. Western blot and reverse transcription-quantitative polymerase chain reaction analyses were performed to evaluate the endoplasmic reticulum (ER) stress and pyroptosis. Immunohistochemistry staining and ELISA analyses were used to detect the inflammation level. In vivo electrophysiological studies were conducted to assess arrhythmia susceptibility. Our findings revealed that CHR treatment ameliorated cardiac dysfunction and fibrosis in ISO-challenged mice. Moreover, CHR reduced susceptibility to ventricular fibrillation by reducing ventricular electrical remodeling and increasing the expression of gap junction proteins and ion channels. Additionally, CHR inhibited the TGF-β1-stimulated transformation of cardiac fibroblasts into myofibroblasts in vitro. CHR inhibited ER stress, pyroptosis, and inflammation in vivo and in vitro. Furthermore, tunicamycin (TM)-induced activation of ER stress abolished the protective effects of CHR. CHR treatment attenuates cardiac fibrosis and arrhythmia by suppressing the ER stress/pyroptosis axis and inflammation.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8476","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chrysophanol (CHR), one of the principal bioactive compounds extracted from the rhizome of Rheum palmatum L., is known for its anti-inflammatory, antioxidative, anti-cancer, and cardioprotective effects. However, the effect of CHR on cardiac fibrosis remains elusive. In this study, mice were administered isoproterenol (ISO) to induce cardiac fibrosis in vivo, and cardiac fibroblasts were pretreated with transforming growth factor-β1 (TGF-β1) to induce the transformation of fibroblasts into myofibroblasts in vitro. Western blot and reverse transcription-quantitative polymerase chain reaction analyses were performed to evaluate the endoplasmic reticulum (ER) stress and pyroptosis. Immunohistochemistry staining and ELISA analyses were used to detect the inflammation level. In vivo electrophysiological studies were conducted to assess arrhythmia susceptibility. Our findings revealed that CHR treatment ameliorated cardiac dysfunction and fibrosis in ISO-challenged mice. Moreover, CHR reduced susceptibility to ventricular fibrillation by reducing ventricular electrical remodeling and increasing the expression of gap junction proteins and ion channels. Additionally, CHR inhibited the TGF-β1-stimulated transformation of cardiac fibroblasts into myofibroblasts in vitro. CHR inhibited ER stress, pyroptosis, and inflammation in vivo and in vitro. Furthermore, tunicamycin (TM)-induced activation of ER stress abolished the protective effects of CHR. CHR treatment attenuates cardiac fibrosis and arrhythmia by suppressing the ER stress/pyroptosis axis and inflammation.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.